
- •Узбекское агентство почты и телекоммуникации Ташкентский электротехнический институт связи
- •Ташкент 2002
- •Введение
- •Лекция 1. Основные элементы, понятия и законы электрических цепей
- •Определение электрических цепей. Понятие тока, напряжения и эдс
- •Элементы электрических цепей и их свойства
- •Пассивные элементы
- •А dq ктивные элементы
- •Схемы замещения реальных элементов эц
- •Электрическая схема и ее элементы
- •Виды соединений элементов эц
- •Законы Кирхгофа
- •Закон Ома
- •Вопросы для самоконтроля к лекции 1
- •Лекция 2. Методы расчета цепей постоянного тока
- •2.1. Определение и порядок расчета цепей постоянного тока
- •Порядок расчета лэц при воздействии постоянной эдс
- •2.2. Расчет резистивных лэц
- •2.3. Метод контурных токов
- •Правила составления уравнений по мкт
- •Порядок расчета по мкт
- •2.4. Метод узловых напряжений
- •Правила составления уравнений по мун
- •Порядок расчета по мун
- •2.5. Вопросы для самоконтроля к лекции 2
- •Лекция 3. Лэц при гармоническом воздействии
- •3.1. Гармонические колебания и их описание
- •3.2. Действующее значение периодической функции
- •3.3. Представление гармонических колебаний векторами
- •3.4. Связь между мгновенными значениями напряжения и тока на элементах цепи
- •1. Активное сопротивление
- •2. Индуктивность
- •3.Емкость
- •3.5. Последовательное соединение элементов r, l, c
- •3.6. Вопросы для самоконтроля к лекции 3
- •Лекция 4. Символический метод расчета цепей гармонического тока
- •4.1. Символическое изображение синусоидальных функций комплексными величинами
- •4.2. Изображение производной и интеграла от синусоидальной функции
- •4.3. Комплексные сопротивления и проводимость
- •4.4. Законы Ома и Кирхгофа в комплексной форме
- •4.5. Выражение мощности в комплексной форме. Баланс мощностей
- •4.6. Условие передачи максимальной мощности от источника в нагрузку
- •4.7. Вопросы для самоконтроля к лекции 4
- •Лекция 5. Простейшие частотно-избирательные цепи
- •5.1. Комплексная передаточная функция
- •5.2. Явление резонанса и его значение в радиотехнике и электросвязи
- •5.3. Последовательный колебательный контур.
- •5.4. Виды расстроек контура
- •5.5. Частотные характеристики последовательного колебательного контура
- •5.6. Полоса пропускания
- •5.7. Вопросы для самоконтроля к лекции 5
- •Литература: [1] с. 148-170; [2] с. 54-62; [3] с. 122-131; [4] с. 126-128; [5] с. 191-205; 211-226. Лекция 6. ПереходнЫе процессы в лэц
- •6.1. Понятие о переходном процессе
- •6.2. Законы коммутации
- •6.3. Классический метод расчёта переходных процессов
- •Например, переходной процесс в цепи, состоящей из последовательно соединённых r,l,с элементов при включении в неё источника эдс е(t) описывается уравнением:
- •6.4. Способы составления характеристического уравнения
- •6.5. Порядок расчёта переходных процессов классическим методом
- •6.6. Включение цепи rl на постоянное напряжение
- •Мерой длительности переходного процесса является постоянная времени .
- •6.7. Включение цепи rc на постоянное напряжение
- •6.8. Вопросы для самоконтроля к лекции 6
- •Литература: [1] с. 185-198; [2] с. 103-112; [3] с. 199-209; [5] с. 344-363. Лекция 7. Операторный метод расчёта переходных процессов
- •7.1. Преобразования Лапласа
- •7.2. Некоторые свойства преобразования Лапласа
- •7.3. Законы Ома и Кирхгофа в операторной форме Благодаря линейности преобразования Лапласа, законы Ома и Кирхгофа можно написать для изображений токов и напряжений
- •7.4. Определение оригинала функции по его изображению
- •7.5. Порядок расчёта переходных процессов операторным методом
- •7.6. Операторная передаточная функция
- •7.7. Вопросы для самоконтроля к лекции 7
- •Литература: [1] с. 218-248; [2] с. 121-127; [3] с. 219-237; [4] с. 251-257; [5] с. 381-391. Лекция 8. Анализ лэц при импульсных воздействиях
- •8.1. Единичная и импульсная функции
- •8.2. Переходная и импульсная характеристики
- •8.3. Временной метод анализа лэц
- •8.4. Частотный метод анализа лэц
- •8.5. Вопросы для самоконтроля к лекции 8
- •Литература: [1] с. 254-302; [3] с. 238-241, 245-277; [4] с. 257-258, 215-219, 274-277; [5] с. 391-397.
- •9.1. Назначение и классификация электрических фильтров
- •9.2. Рабочие характеристики электрических фильтров
- •. Полиномиальные фильтры
- •Передаточная функция фч определяется выражением
- •. Расчёт полиномиальных фильтров
- •9.5. Табличный метод расчёта фильтров
- •9.6. Вопросы для самоконтроля к лекции 9
- •Литература
- •Содержание
- •7.7. Вопросы для самоконтроля к лекции 7 ………………………………….… 65
- •8.5. Вопросы для самоконтроля к лекции 8 ……………………………………. 73
- •9.5. Вопросы для самоконтроля к лекции 9 ……………………………………. 80
Литература: [1] с. 254-302; [3] с. 238-241, 245-277; [4] с. 257-258, 215-219, 274-277; [5] с. 391-397.
Лекция 9. Электрические фильтры
9.1. Назначение и классификация электрических фильтров
Электрическим фильтром (ЭФ) называется четырёхполюсник, пропускающий без ослабления колебания одних частот и пропускающий колебания других частот с большим ослаблением.
Полоса частот, при которых ослабление мало, называется полосой пропускания (ПП), а остальная область частот называется полосой задерживания (ПЗ). По взаимному расположению ПП и ПЗ различают 4 типа фильтров (рис. 9.1):
а) фильтры нижних частот (ФНЧ) (рис. 9.1, а);
б) фильтры верхних частот (ФВЧ) (рис. 9.1, б);
в) полосовые фильтры (ПФ) (рис. 9.1, в);
г) режекторные фильтры (РФ) (рис. 9.1, г);
а) б) в) г)
Рис. 9.1. Амплитудно-частотные передаточные характеристики идеальных фильтров.
9.2. Рабочие характеристики электрических фильтров
АЧХ передаточной функции идеального ФНЧ определяется выражением
|H(j)|2 = 1 0< < C
0 >C (9.1)
Ослабление фильтра равно
(9.2)
а)
б)
Рис. 9.2.
Реальные фильтры имеют АЧХ отличные от идеальных. Требования к характеристикам фильтров задаются в виде допустимых пределов их изменения:
А - максимально допустимое ослабление в ПП;
АS - минимально допустимое ослабление в ПЗ;
f1 - граничная частота ПП (для ПФ и РФ задаются f-1 и f1);
fS – граничная частота ПЗ ( для ПФ и РФ задаются fS1 b fS2 ).
Требования по ослаблению для всех типов фильтров показаны на рис. 9.3. Между ПП и ПЗ расположена переходная область (ПО).
б) в) А f fS
а)
Рис. 9.3. Частотные характеристики ослабления фильтров.
-
. Полиномиальные фильтры
Идеальные частотные характеристики фильтра (рис. 9.2) заведомо нереализуемы физической цепью с конечным числом элементов. АЧХ реальных фильтров (рис. 9.3) могут лишь приближаться к ним с той или иной степенью точности в зависимости от сложности схемы фильтра. Поэтому необходимо решить задачу аппроксимации, т.е. найти такую функцию, достаточно точно воспроизводящую требуемую характеристику.
На практике эта задача решается с помощью:
-
полиномов Баттерворта – получают фильтры с максимально плоскими характеристиками ослабления (фильтры Баттерворта);
-
полиномов Чебышева – получают фильтры с равноволновыми характеристиками ослабления в ПП (фильтры Чебышева).
Фильтром Баттерворта (ФБ) называется фильтр, у которого ослабление монотонно возрастает и на границах ПП A=3дБ. Передаточная функция ФБ определяется выражением
,
(9.3)
где Bn (p) -полином Баттерворта порядка n;
an,…, an-1 - положительные вещественные числа.
,
где
.
(9.4)
а) б)
Рис. 9.4. Амплитудно-частотные характеристики ФНЧ Баттерворта
Крутизна частотных характеристик ФБ зависит от степени n (порядка фильтра). Чем выше порядок фильтра, определяемый числом реактивных элементов, тем круче идёт характеристика в ПЗ и тем меньше ослабление в ПП.
Фильтром Чебышева (ФЧ) называется фильтр, у которого ослабление в ПП имеет колебательный характер с амплитудой, не превышающей А=0,012 дБ, а в ПЗ монотонно возрастает с крутизной, большей чем у ФБ такого же порядка.