- •Общие сведения
- •Краткое содержание
- •Практикум
- •Тема 1. Векторная алгебра.
- •1.1. Понятие вектора и линейные операции над векторами.
- •1.1.1. Понятие вектора.
- •1.1.2. Линейные операции над векторами.
- •Свойства сложения векторов:
- •1.1.3. Понятие линейной зависимости векторов.
- •1.1.4. Линейные комбинации двух векторов.
- •Доказательство.
- •1.1.5. Линейные комбинации трех векторов.
- •Доказательство.
- •1.1.6. Линейная зависимость четырех векторов.
- •1.1.7. Понятие базиса. Аффинные координаты.
- •1.1.8. Проекция вектора на ось.
- •1.1.9. Декартова прямоугольная система координат в пространстве. (дпск)
- •1.2. Скалярное произведение двух векторов.
- •1.2.1. Определение скалярного произведения (сп).
- •1.2.2. Геометрические свойства сп.
- •Доказательство.
- •1.2.3. Алгебраические свойства сп.
- •1.2.4. Выражение скалярного произведения (сп) в декартовых прямоугольных координатах (дпк).
- •1.3. Векторное произведение двух векторов.
- •1.3.1. Правые и левые тройки векторов и системы координат.
- •1.3.2. Векторное произведение двух векторов (вп).
- •1.3.3. Геометрические свойства вп.
- •1.3.4. Алгебраические свойства векторного произведения (вп).
- •1.3.5. Понятие матрицы и определителя второго и третьего порядка.
- •1.3.6. Выражение векторного произведения (вп) в декартовых прямоугольных координатах (дпк).
- •1.3.7. Смешанное произведение трех векторов.
- •1.3.8. Выражение смешанного произведения в декартовых координатах.
- •1.4. Уравнение линии на плоскости.
- •1.4.1.Параметрическое представление линии.
- •1.4.2.Уравнение линии в полярных координатах.
- •1.4.3. Пересечение двух линий.
- •1.4.4. Уравнение поверхности и уравнение линии в пространстве.
- •1.5. Различные виды уравнений прямой на плоскости.
- •1.5.1. Общее уравнение прямой.
- •1.5.2. Уравнение прямой с угловым коэффициентом.
- •1.5.3. Уравнение прямой в отрезках.
- •1.5.4. Каноническое уравнение прямой.
- •1.5.5. Параметрические уравнения прямой.
- •1.5.6. Угол между двумя прямыми. Условия параллельности и перпендикулярности двух прямых.
- •1.5.7. Нормированное уравнение прямой. Отклонение точки от прямой.
- •1.5.8. Приведение общего уравнения прямой к нормированному виду.
- •Тема 2. Геометрия на плоскости и в пространстве. Общие сведения
- •Краткое содержание
- •Практикум
- •Тема 2. Кривые второго порядка.
- •2.1. Эллипс.
- •2.1.1. Определение эллипса и вывод его канонического уравнения.
- •2.1.2. Исследование формы эллипса.
- •2.1.3. Эксцентриситет и фокальные радиусы эллипса.
- •2.2. Гипербола.
- •2.2.1. Определение гиперболы и вывод ее канонического уравнения.
- •2.2.2. Исследование формы гиперболы.
- •Асимптоты гиперболы
- •Равнобочная гипербола
- •Сопряженная гипербола
- •2.2.3. Эксцентриситет и фокальные радиусы гиперболы.
- •Фокальные радиусы
- •2.3. Парабола.
- •2.3.1. Определение параболы и ее уравнение.
- •2.3.2. Исследование формы параболы.
- •2.4. Общее свойство кривых второго порядка - эллипса, гиперболы и параболы.
- •2.4.1. Директриса эллипса гиперболы и параболы.
- •2.4.2. Полярное уравнение кривой второго порядка.
- •Тема 3. Вещественные и комплексные числа. Общие сведения
- •Краткое содержание
- •Практикум
- •3.1. Плоскость как поверхность первого порядка.
- •3.2. Неполные уравнения плоскости.
- •3.3. Уравнение плоскости в отрезках.
- •3.4. Нормальное уравнение плоскости. Расстояние от точки до плоскости.
- •3.5. Уравнение прямой в пространстве.
- •3.6. Направляющий вектор прямой. Канонические уравнения прямой. Параметрические уравнения прямой.
- •3.7. Некоторые дополнительные предложения и примеры.
- •Тема 4. Числовые последовательности. Общие сведения
- •Прямое произведение двух множеств.
- •4.1.2.Вещественные числа и их изображение на числовой оси. Основные свойства рациональных чисел.
- •Измерение отрезков числовой оси.
- •4.1.3. Ограниченные множества вещественных чисел.
- •Теорема 1.
- •4.1.4. Некоторые конкретные множества вещественных чисел.
- •4.2. Теория последовательностей.
- •4.2.1. Понятие числовой последовательности.
- •4.2.2. Бесконечно большие и бесконечно малые последовательности.
- •Примеры.
- •4.2.3. Основные теоремы о бесконечно малых последовательностях.
- •4.2.4. Сходящиеся последовательности. Основные определения.
- •Определение 2.
- •4.2.5. Основные свойства сходящихся последовательностей.
- •4.2.6. Арифметические свойства сходящихся последовательностей.
- •4.2.7. Монотонные последовательности.
- •4.2.8. Число е.
- •4.2.9. Предельный переход в неравенствах.
- •Следствие 1.
- •4.2.10. Подпоследовательности числовых последовательностей.
- •4.2.11. Предельные точки последовательности.
- •4.3. Понятие функции. Предел функции. Непрерывность.
- •4.3.1. Определение функции. Определение 1.
- •4.3.2. Способы задания функций.
- •4.3.3. Монотонные функции.
- •4.3.4. Сложная функция.
- •4.3.5. Обратная функция.
- •4.3.8. Односторонние пределы.
- •4.3.9. Пределы на бесконечности.
2.2.3. Эксцентриситет и фокальные радиусы гиперболы.
Эксцентриситетом гиперболы называется отношение фокусного расстояния к длине ее действительной оси:
или
Так как у гиперболы с>a, то эксцентриситет гиперболы больше единицы. Эксцентриситет характеризует отношение сторон основного прямоугольника, а следовательно, и форму самой гиперболы.
Фокальные радиусы
Из определения гиперболы (для правой ветви) следует:
.
Так как r1 - r2 = 2a, то .
Таким образом, получаем формулы, выражающие фокальные радиусы любой точки М(х;у) правой ветви через х:
(1)
Для левой ветви эти формулы примут вид:
(2)
Выражая формулы (1) и (2) через эксцентриситет, получим для точек правой ветви гиперболы:
(3)
для точек левой ветви гиперболы:
(4).
2.3. Парабола.
2.3.1. Определение параболы и ее уравнение.
Параболой называется геометрическое место точек на плоскости, каждая из которых равноудалена от данной точки, называемой фокусом, и данной прямой, называемой директрисой (предполагается, что эта прямая не проходит через фокус).
Для вывода уравнения параболы за ось ОХ возьмем прямую, проходящую через фокус перпендикулярно директрисе. За положительное направление оси абсцисс возьмем направление от директрисы к фокусу.
Рис. 7
За начало координат возьмем точку 0, которая делит пополам отрезок от директрисы до фокуса. Длину этого отрезка, который называется параметром параболы, обозначим через Р. Фокус F будет иметь координаты , а координаты точки оси ОХ, через которую проходит директриса, будут .
Возьмем произвольную точку М(х;у), лежащую на параболе, соединим ее прямой с точкой F, а затем опустим из точки М на директрису перпендикуляр МК. Длина отрезка, соединяющего точку М(х;у) параболы с фокусом, называется фокальным радиусом этой точки и обозначается через r (Рис. 1).
Согласно определению параболы:
FM = KM (1)
Определяя FM и КМ по формуле расстояния между двумя точками, получим:
Следовательно,
. (2)
Уравнению (2) будут удовлетворять координаты каждой точки параболы.
Приведем уравнение параболы к более удобному виду, для чего возведем обе части равенства (2) в квадрат:
,
Откуда,
у2 = 2рх. (3)
Уравнение (3) называется каноническим уравнением параболы. Сопоставляя равенства (1) и (2), можно выразить фокальный радиус точки М(х;у) параболы через абсциссу этой точки:
. (4).
2.3.2. Исследование формы параболы.
Для определения вида параболы найдем у из канонического уравнения параболы:
.
Из уравнения (3) п.1 следует, что х не может быть отрицательным. При х=0, y = 0, следовательно, точка О(0;0) лежит на параболе. Затем заключаем, что каждому значению х>0 соответствуют два значения у, равные по абсолютной величине, но противоположные по знаку. Следовательно, парабола представляет собой кривую, расположенную вправо от начала координат и симметричную относительно оси абсцисс.
Рис. 8
Из формулы (3) п.1 следует, что по мере возрастания х возрастает и |у|, и когда х неограниченно растет, то и у по абсолютной величине неограниченно растет.
У параболы, заданной каноническим уравнением у2=2рх, осью симметрии является ось абсцисс. Точка пересечения параболы с осью симметрии называется вершиной параболы. В данном случае вершина параболы лежит в начале координат. Заметим, что у параболы одна вершина, у гиперболы - две, у эллипса - четыре.
Проведем на Рис. 8 фокальный радиус перпендикулярно оси симметрии и определим длину LF по формуле (4) п.1. Так как абсцисса точки L равна , то r=р. Следовательно, число Р равняется длине фокального радиуса, перпендикулярного к оси симметрии. В связи с этим число Р называют фокальным параметром параболы.
Парабола, уравнение которой у2=2рх, р>0, является кривой, расположенной справа от оси ординат.
Кривая, уравнение которой у2=-2рх, р>0, будет также параболой. Вершина этой параболы лежит в начале координат, осью симметрии является ось абсцисс. Все точки этой параболы лежат слева от оси ординат (Рис. 9, а)
а) |
б) |
в) |
Рис. 9
Рассуждая аналогичным образом, заключаем, что уравнение х2=2ру, р>0, является уравнением параболы, вершина которой лежит в начале координат, осью симметрии является ось ординат (Рис. 9, б). Эта парабола лежит выше оси абсцисс. Уравнение же вида х2=-2ру, р>0, является уравнением параболы, лежащей ниже оси абсцисс, с вершиной в начале координат. Осью симметрии этой параболы является ось ординат (Рис. 9, в).
Примечание. Условимся, наглядности ради, говорить, что “ветви” параболы у2=2рх (р>0) “направлены вправо”, “ветви” параболы х2=2ру (р>0) “направлены вверх” и т. д.