Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции-Заоч-МВ.doc
Скачиваний:
11
Добавлен:
21.11.2018
Размер:
873.47 Кб
Скачать

4.5 Наклёп или упрочнение металлов под воздействием

холодной пластической деформации.

Если металл нагрузить до напряжений σ превышающих предел текучести (σ > σт), то наряду с упругой деформацией появится пластическая составляющая деформации, которая не исчезает после разгрузки образца. При следующем акте нагружения металл начнёт пластически деформироваться уже не при σт, а при напряжении σ , до которого его нагрузили на предыдущем этапе. И т.д. Получается, что у материала под воздействием пластический деформации повышается предел текучести σт. Кроме предела текучести под воздействием пластический деформации повышается и предел прочности σB, но менее стремительно. Разница между σT и σB сокращается, что ведёт к сокращению запаса пластичности материала, т.е. уменьшению его относительного удлинения δ и относительного сужения ψ. Такое изменение механических свойств материала под воздействием пластической деформации называют наклёпом.

При наклёпе изменяется микроструктура материала. Зёрна металла становятся вытянутыми в направлении деформации. Говорят, что в материале появляется текстура, т.е. преимущественная ориентация зёрен.

На границах вытянутых зёрен при большом увеличении микроскопа можно увидеть «ступеньки», являющиеся результатом выхода дислокаций на поверхность зерен.

Причиной наклёпа является резкое возрастание в металле плотности дислокаций. Дело в том, что при пластической деформации происходит интенсивное нарождение всё новых дислокаций, которые приходят на смену вышедших на поверхность. По мере нарастания пластической деформации плотность дислокаций увеличивается и может достичь уровня 1012 см/см3. При такой высокой плотности дислокации начинают «зацепляться», «переплетаться», что ведёт к ограничению их подвижности.

Таким образом, наклёп - это упрочнение металлов под воздействием пластической деформации, причиной которого является резкое возрастание плотности дислокаций, ведущее к ограничению их подвижности и, следовательно, к потере материалом пластичности.

4.6 Возврат и рекристаллизация деформированных металлов

Под воздействием пластической деформации резко возрастает плотность дефектов структуры (точеных и линейных), кристаллическая решётка металла искажается, возникают внутренние напряжения, зёрна материала вытягиваются в направлении деформации. Материал с такой структурой имеет повышенную свободную энергию и поэтому его состояние оказывается неравновесным. При длительной выдержке, металл стремится к более устойчивому, равновесному состоянию. Этот процесс ускоряется (активизируется) с повышением температуры.

Переход деформированного металла при нагреве в более устойчивое состояние называют возвратом. Температура возврата - T < 0,3Тплавления. Например, для стали она меньше 4000С. При возврате уменьшается плотность дефектов за счёт их аннигиляции и уничтожения на стоках. Частично снимаются внутренние напряжения и искажения кристаллической решётки. Материал переходит в более устойчивое, равновесное состояние, хотя видимых изменений в структуре пока не наблюдается, то есть зёрна по-прежнему остаются вытянутыми. Твёрдость и прочность материала при возврате несколько уменьшаются, а пластичность увеличивается. Таким образом, возврат только частично снимает наклёп.

При нагреве деформированного металла до более высоких температур наблюдается процесс рекристаллизации (перекристаллизации). На месте вытянутых зёрен образуются новые, округлые зёрна. Процесс рекристаллизации идёт в два этапа: первичная рекристаллизация и собирательная рекристаллизация. На первом этапе на границах вытянутых зёрен появляются зародыши новых кристаллов, которые растут за счёт поглощения вытянутых зёрен и вырастают округлыми. Собирательная рекристаллизация наблюдается при более высоких температурах. На этом этапе происходит укрупнение новых зёрен путём их объединения. Размер зерна после рекристаллизации зависит от степени деформации металла, температуры его нагрева и других факторов. Чем меньше степень деформации и выше температура нагрева, тем крупнее зёрна и наоборот, чем больше степень деформации и меньше температура, тем мельче зёрна. У материала с мелкозернистой структурой механические свойства лучше.

Температура рекристаллизации связана с температурой плавления материала: Tp = а Тпл. Для сплавов a находится в пределах от 0,5 до 0,6; для технически чистых металлов - от 0,3 до 0,4. Чем чище металл, тем меньше коэффициент a вплоть до 0,1. У олова и свинца комнатная температура является температурой рекристаллизации.

В процессе рекристаллизации полностью снимаются искажения кристаллической решетки и избыточные внутренние напряжения. Плотность дефектов резко уменьшается и достигает своего исходного значения (до деформации). Микроструктура материала также возвращается к исходному состоянию. Твёрдость и прочность металла уменьшаются, а пластичность увеличивается и достигает своего исходного значения. Таким образом, рекристаллизация полностью снимает наклёп.

В зависимости от температуры, при которой осуществляется деформация материала, различают деформацию холодную и горячую. Холодная деформация осуществляется при температурах ниже температур рекристаллизации. При этом развивается наклёп, и степень деформации оказывается ограниченной. Горячая деформация осуществляется при температурах рекристаллизации. При этом процесс рекристаллизации опережает процесс развития наклепа, и степень деформации металла может быть значительно больше. У некоторых металлов комнатная температура является температурой горячего деформирования.