Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Мет. ук. лаб. АСВК..doc
Скачиваний:
23
Добавлен:
20.11.2018
Размер:
26.21 Mб
Скачать

2.7) Твердотельные накопители.

За какие-то три года, буквально у нас на глазах флэш-память превратилась из экзотического и дорогостоящего средства хранения данных в один из самых массовых носителей. Твердотельная память этого типа широко используется в портативных плеерах и карманных компьютерах, в фотоаппаратах и миниатюрных накопителях «флэш - драйвах».

Первые серийные образцы работали с низкой скоростью, однако сегодня скорость считывания и записи данных на флэш-память позволяет смотреть хранящийся в миниатюрной микросхеме полноформатный фильм или запускать «тяжелую» операционную систему класса Windows XP. Некоторые крупные производители уже продемонстрировали компьютеры, в которых вместо жесткого диска занимают чипы флэш-памяти, а чересчур оптимистичные наблюдатели и вовсе торопятся полностью похоронить винчестеры, так же, как и флоппи-диски.

Однако у флэш-памяти есть один неприятный недостаток, препятствующий тому, чтобы этот тип носителя заманил все существующие оптические и магнитные накопители, и этот недостаток связан с надежностью и долговечностью. Дело в том, что в силу самой конструкции флэш-память имеет конечное число циклов стирания и записи, достигающее, с чем уже столкнулись владельцы цифровых фотоаппаратов и флэш - драйверов, интенсивно эксплуатирующие эти носители.

По оценкам самих производителей, современная флэш-память, в среднем, способна выдерживать порядка 100000 циклов стирания/записи, хотя в ряде случаев заявляют куда более впечатляющие показатели – до миллиона циклов. Чтобы понять, почему возникает такое ограничение, необходимо немного познакомиться с принципами работы этого типа носителей.

Все флэш-накопители построены на свойстве полевых транзисторов хранить в «плавающем» затворе электрический заряд в течение многих лет. Присутствие или отсутствие заряда в транзисторе рассматривается как логический ноль или логическая единица в двоичной системе счисления. В современных накопителях применяется память типа НЕ- И лил NAND, которая обеспечивает высокую скорость последовательного доступа к данным и отличается невысокой себестоимостью производства в сочетании с высокой ёмкостью. Недостатки NAND-памяти – нивелируются высокой ёмкостью и высокой скоростью последовательного доступа, которая требуется в таких устройствах, как фотокамеры, плееры, съемные накопители.

Для записи и стирания данных в NAND-памяти используется туннелирование электронов методом Фаулера - Нордхейма (FN - туннелирование) через диэлектрик, что не требует высокого напряжения и позволяет сделать ячейки миниатюрнее. Однако именно процесс туннелирования заряда физически изнашивает ячейки, поскольку при помощи электрического тока заставляет электроны проходить сквозь барьеры из диэлектриков и проникать в затвор. Поэтому больше всего изнашивают микросхему процессы стирания и записи – для чтения же через канал просто пропускается ток.

Разумеется, производители памяти принимают меры для увеличения срока службы твердотельных накопителей: в первую очередь, они связаны с обеспечением равномерности процессов записи/стирания по всем ячейкам массива, чтобы какие-то из них не были подвержены большему износу, чем другие. Один из способов – наличие резервного объема памяти, за счет которой при помощи специальных алгоритмов обеспечивается равномерная нагрузка и коррекция возникающих ошибок. Кроме того, выводятся из работы вышедшие из строя ячейки в целях предотвращения потери информации. В служебную область записывается также таблица файлов системы, что предотвращает сбои чтения данных на логическом уровне, возможные, к примеру, при некорректном отключении накопителя или при внезапном отключении электроэнергии.

К сожалению, с увеличением ёмкости микросхем Флэш-памяти снижается и количество циклов стирания/записи, поскольку ячейки становятся все более миниатюрными и для рассеивания оксидных перегородок, изолирующих плавающий затвор, требуется все меньше напряжения. Поэтому с проблемами сталкиваются не только владельцы флэш-накопителей очень маленького, но и очень большого объема.

Практика показывает, что гигабайтная флэш - карточка при интенсивном ежедневном использовании в цифровом фотоаппарате может начать выходить из строя уже через год-два после начала применения. Некоторые фотолюбители прекращают пользоваться такими картами, но хранят на них части своих архивов. Это тоже довольно опрометчивое решение, ведь, несмотря на реализованные в контроллерах карточек системы защиты от стирания, в том числе, аппаратные, при чтении архивов возможна подача повышенного (или пониженного) напряжения на изношенные ячейки, что флэш - карта исчерпала свой ресурс и полностью отказалась от ее использования. Износ флэш-памяти ускоряется лишь в случае неправильного ее использования – постоянного стирания и удаления небольших файлов. Кстати, в этом кроется причина якобы более низкой надежности USB - флэш - драйверов по сравнению с карточками различных форматов. Все дело в том, что, к примеру, в фотоаппаратах или в плеерах ёмкость карты заполняется полностью и постепенно, в то время как у флэш - драйвов нередко более «званый» режим эксплуатации – «записал – стер – записал». При этом в последнем случае, несмотря на все алгоритмы и технологии, повышенному износу подвергаются одни и те же участки микросхем. Совет здесь может быть только один: старайтесь по возможности полностью заполнять флэш - драйвы и не удалять немедленно ставшие ненужными файлы – тем самым вы продлите срок службы накопителя.

Кроме того, обычные карточки флеш - памяти не рассчитаны на использование в качестве постоянного накопителя: не рекомендуется редактировать документы, базы данных непосредственно на «флэшке», работать с операционной системой, записанной в карточку памяти. Помимо преждевременно износа из-за постоянных процессов записи/стирания и постоянного обновления таблицы файлов системы возможен выход накопителя из строя по причине банального перегрева! Разумеется, если вы используете флэш - карту только для чтения, подобных проблем не возникнет. Для описанных случаев больше подходят традиционные механические магнитные внешние накопители различных форм-факторов, изначально рассчитанные на подобные режимы работы.

Конечно, разработчики продолжают совершенствовать конструкцию и технологические процессы для изготовления флэш-памяти, которые позволили бы максимально увеличить число циклов стирания/записи и еще больше нарастить емкость этого носителя, однако проводятся исследования и в области альтернативных твердотельных накопителей.

Например, в Intel уже несколько лет занимаются разработкой твердотельной памяти на аморфных полупроводниках (Ovonic Unified Memory, OUM). В основу работы такой памяти положена технология фазового перехода, аналогичная принципу записи на перезаписываемые диски CD-RW или DVD-RW, при котором состояния регистрирующего слоя изменяется с аморфного на кристаллическое, и одно из этих состояний соответствует логическому нулю, а другое – логической единице. Принципиальное отличие - способ записи: если в оптических носителях применяется нагрев лазера, то в OUM нагрев производится непосредственно электрическим током.

Как заявляют в Intel, в отличие от флэш-памяти, OUM теоретически обладает повышенной надежностью и плотностью хранения данных, а так же повышенным быстродействием – до 100-200 нс. И, самое главное, максимальное число циклов записи/стирания в OUM превышает 10 триллионов – на несколько порядков больше, чем у фдэш - памяти. Несмотря на то, что в Intel заявляют о работах над OUM-памятью уже в течение 5 лет, промышленное производство таких чипов, по оценкам специалистов, начнется не раньше следующего десятилетия.

Еще одна альтернативная флэш-памяти и куда более близкая к серийному производству технология – магниторезистивная память (MRAM), существенно опережающая по быстродействию OUM-память: время доступа этих чипов на сегодня составляет не более 10-15 нс. Благодаря этому память типа MRAM может применяться не только для длительного хранения данных, но и в качестве оперативной памяти.

Чипы MRAM построены на базе элемен6тов магнитной памяти, укрепленных на кремневой подложке, и теоретически поддерживают бесконечное число циклов записи и стирания. Кроме того, важным свойством MRAM – памяти является возможность мгновенного включения, что особенно ценится в мобильных устройствах.

Значение ячейки в этом типе памяти определяется магнитным, а не электрическим зарядом, как в обычной флэш-памяти. Важное достоинство этой разработки – совместимость технологии производства с техпроцессом по выпуску КМОП – чипов, а также возможности использования материалов, применяемых в традиционных магнитных носителях, в частности, ферромагнитных пленок.

Гибридная технология обладает и рядом ограничений: пока подобные микросхемы рассчитаны на слишком «грубый» по сегодняшним меркам 0,18- микронный техпроцесс, что не позволяет добиться сравнимых с флэш-памятью размеров ячеек. Кроме того, себестоимость производства MRAM – память пока непозволите6льно высока.

Разработкой технологии MRAM занимается один из крупнейших мировых производителей памяти, компания Infineon, а так же «голубой гигант» IBM, начавшей исследования в этой области еще в 70-х годах прошлого столетия. Свои средства в развитие технологии MRAM инвестировали также такие компании, как Toshiba,Freescale Semiconductor и NEC, поэтому есть все основания полагать, что этот тип памяти появится на рынке в качестве серийной продукции гораздо раньше OUM.

Пока же все альтернативные технологии хранения данных остаются в проектах, производители продолжают совершенствовать традиционную флэш - технологию, переходят на более тонкие техпроцессы и повышают емкость микросхем. Можно не сомневаться в том, что фирмы, выпускающие флэш-память, намерены использовать весь потенциал этого типа носителей перед переходом на накопители другого типа. Поэтому число устройств, снабженных флэш-памятью, в ближайшее время будет увеличиваться, и рекомендации по использованию такой памяти вряд ли скоро потеряют актуальность.

Твердотельный накопитель (англ. SSD, Solid State Drive, Solid State Disk) — энергонезависимое, перезаписываемое компьютерное запоминающее устройство без движущихся частей. Следует различать твердотельный накопители основанные на использовании энергозависимой (RAM SSD) и энергонезависимой (NAND или Flash SSD) памяти.

Твердотельный накопители основанные на использовании энергонезависимой памяти являются весьма перспективной разработкой. Многие аналитики считают, что уже в ближайшие годы NAND твердотельные накопители займут достаточно большую долю рынка накопителей, отвоевав её у накопителей на жёстких магнитных дисках. По состоянию на сегодняшний день, твердотельные накопители используются в основном в специализированных вычислительных системах и в некоторых моделях ноутбуков (например, ASUS Eee PC).

История развития

Первые накопители подобного типа (на ферритовых сердечниках) были созданы еще для ламповых вычислительных машин. Однако с появлением барабанных, а затем и дисковых накопителей вышли из употребления из-за чрезвычайно высокой стоимости.В 1978 компания StorageTek разработала первый твердотельный накопитель современного типа (основанный на RAM-памяти).

В 1995 компания M-Systems представила первый твердотельный накопитель на flash-памяти.20.06.2008 Южнокорейской компании Mtron Storage Technology удалось создать SSD диск со скоростью записи 240 МБ/с и скоростью чтения 260 МБ/с, который она продемонстрировала на выставке в Сеуле. Объём данного накопителя — 128 ГБ. По заявлению компании выпуск таких устройств начнётся уже в 2009 году

Архитектура и функционирование

а )RAM SSD

Эти накопители, построенные на использовании энергозависимой памяти (такой же, какая используется в ОЗУ персонального компьютера) характеризуются сверхбыстрыми чтением, записью и поиском информации. Основным их недостатком является чрезвычайно высокая стоимость (от 80 до 800 долларов США за Гигабайт). Используются, в основном, для ускорения работы крупных систем управления базами данных и мощных графических станций. Такие диски, как правило, оснащены аккумуляторами для сохранения данных при потере питания, а более дорогие модели — системами резервного и/или оперативного копирования.

Своеобразной разновидностью таких дисков является RIndMA диск — подключенный быстрым сетевым соединением вторичный ПК с программным RAM-диском. Такой диск стоит в 2-4 раза меньше специализированных, но не рекомендуется для использования в критичных к потере данных приложениях. б)NAND SSD

Накопители, построенные на использовании энергонезависимой памяти (NAND SSD) появились относительно недавно, но в связи с гораздо более низкой стоимостью (3-10 долларов США за Гигабайт) начали уверенное завоевание рынка. До недавнего времени существенно уступали традиционным накопителям в чтении и записи, но компенсировали это (особенно при чтении) высокой скоростью поиска информации (сопоставимой со скоростью RAM-дисков). Сейчас уже выпускаются твердотельные Flash диски со скоростью чтения и записи сопоставимой с традиционными и разработаны модели существенно их превосходящие (ожидаются к выпуску в начале 2009 года). Характеризуются относительно небольшими размерами и низким энергопотреблением. Уже практически полностью завоевали рынок ускорителей баз данных среднего уровня и начинают теснить традиционные диски в мобильных приложениях.

Преимущества по сравнению с жесткими дисками

  1. более высокая скорость запуска, отсутствие движущихся частей;

  2. быстрый поиск информации;

  3. малое время считывания информации;

  4. быстрое время записи (только для RAM);

  5. низкая потребляемая мощность;

  6. отсутствие шума от движущихся частей и охлаждающих вентиляторов;

  7. высокая механическая стойкость;

  8. широкий диапазон рабочих температур;

  9. практически устойчивое время считывания файлов вне зависимости от их расположения или фрагментации;

  10. малый размер и вес.

Недостатки твердотельных накопителей

  • высокая цена за 1 Гб (примерно в 15 раз выше, чем у жестких дисков);

  • малая емкость (лишь экспериментальные твердотельные накопители имеют емкость 1 Тб и больше);

  • более высокая чувствительность к некоторым эффектам, например, внезапной потере питания, магнитным и электрическим полям;

  • ограниченное количество циклов перезаписи: обычная флеш-память позволяет записывать данные до 100 тыс. раз, более дорогостоящие виды памяти — до 5 млн раз;

  • медленная скорость записи (для флеш-памяти);

  • малая плотность записи (за исключением устройств, находящихся на стадии разработки);

  • более высокое потребление энергии в режиме ожидания (к этому особо чувствительны переносные компьютеры).