Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Углерод.docx
Скачиваний:
8
Добавлен:
20.11.2018
Размер:
229.56 Кб
Скачать

8. Алюмосиликаты.

Алюмосиликаты - алюмокремневые солеобразные соединения, к которым в природе относится группа широко распространённых минералов. В кристаллической структуре алюминий обладает, подобно кремнию, четверной тетраэдрической координацией (окружен четырьмя атомами кислорода) и даже кристалло-химически замещает кремний, т. е. химическая роль глинозёма близка (но не идентична) роли кремнезёма. Алюминий может входить в состав силикатов и обладать, подобно магнию и прочим типичным основаниям, шестерной (октаэдрической) координацией. В этом случае соответствующие соединения являются силикатами алюминия, например минералы топаз, пирофиллит и др. При замене в структурных анионных комплексах силикатов кремнекислородного радикала (SiO4)4- на (AlO4)5- возникают дополнительные отрицательные заряды, которые в алюминии компенсируются вхождением дополнительных катионов — обычно К, Na или двухвалентных Ca, Ba с большими радиусами ионов.

Среди минералов т. н. каркасные силикаты всегда являются А. К ним относятся А. калия — ортоклаз и микроклин (KAISi3O8), А. натрия — альбит (NaAlSi3O8), А. кальция — анортит (CaAlSi2O8) и др. Способность взаимозамещения групп NaSi на CaAl создаёт наличие ряда соединений типа твёрдых растворов с неограниченной смесимостью, называемых плагиоклазами. К А. относятся также нефелин KNa3[AISiO4]4, лейцит К[AlSi2O6], группа скаполитов, цеолиты и др. А. распространены также среди силикатов слоистой структуры, где к ним относятся минералы группы слюд — мусковит KAl2•[AISi3O10]•(ОН)2 и др.; группы хрупких слюд, например Маргарит CaAl2[Al2Si2O10](OH)2; группы хлоритов, например амезит (Mg,Fe)4Al2[Al2Si2O10](OH)8, и др. Среди других структурно-химических типов силикатных минералов А. встречаются значительно реже (из силикатов ленточной структуры — роговая обманка, цепочечной — авгит, островной — кордиерит). Разрушение А. на поверхности Земли приводит к образованию минералов глин, реже гидрослюд, бокситов. Термин "А." введён в минералогию русским учёным академиком В. И. Вернадским, впервые указавшим на аналогичную роль Al и Si при геохимических процессах и в составе природных соединений, что послужило основой созданной им алюмокислотной теории строения силикатов.

Алюмосиликаты искусственные получают синтетическим путём. Наибольшее практическое значение имеют искусственные А. типа природных минералов цеолитов — т. н. молекулярные сита и пермутиты. Методы синтетического получения А. имитируют природные геохимические процессы, протекающие в среде перегретых водных растворов под давлением. Молекулярные сита получают в автоклавах в интервале температур 60—450 °С. Исходным материалом служат раствор алюмината натрия Na[AI(OH)4] и водная суспензия кремниевой кислоты nSiO2•mH2O с некоторой добавкой щёлочи. Получаемый из смеси алюмосиликатный гель промывают и сушат при температуре, близкой к 100°С. Молекулярные сита получают также рекристаллизацией некоторых минералов в концентрированных растворах солей. Пермутиты могут быть получены спеканием каолина Al4[Si4O10](OH)8 или полевого шпата KAISi3O8 с кварцем a-SiO2 и содой Na2CO3 при 1000°С и др. способами. Искусственные А. применяются в химической промышленности и др. отраслях, особенно широко — искусственные молекулярные сита, для процессов глубокой осушки, тонкой очистки и разделения газов, в хроматографическом анализе газов и жидкостей. Пермутиты служат главным образом для уменьшения жёсткости воды.

9. Свойства соединений германия, олова и свинца в степенях окисления +2 и +4 (оксиды, галогениды).

В химические соединениях Германий обычно проявляет валентности 2 и 4, причем более стабильны соединения 4-валентного Германия. При комнатной температуре Германий устойчив к действию воздуха, воды, растворам щелочей и разбавленных соляной и серной кислот, но легко растворяется в царской водке и в щелочном растворе перекиси водорода. Азотной кислотой медленно окисляется. При нагревании на воздухе до 500-700°С Германий окисляется до оксидов GeO и GeO2. Оксид Германия (IV) - белый порошок с tпл 1116°C; растворимость в воде 4,3 г/л (20°С). По химическиv свойствам амфотерна, растворяется в щелочах и с трудом в минеральных кислотах. Получается прокаливанием гидратного осадка (GeO3·nH2O), выделяемого при гидролизе тетрахлорида GeCl4. Сплавлением GeO2 с других оксидами могут быть получены производные германиевой кислоты - германаты металлов (Li2GeO3, Na2GeO3 и другие) - твердые вещества с высокими температурами плавления.

При взаимодействии Германия с галогенами образуются соответствующие тетрагалогениды. Наиболее легко реакция протекает с фтором и хлором (уже при комнатной температуре), затем с бромом (слабое нагревание) и с иодом (при 700-800°С в присутствии СО). Одно из наиболее важных соединений Германия тетрахлорид GeCl4 - бесцветная жидкость; tпл -49,5°С; tкип 83,1°С; плотность 1,84 г/см3 (20°С). Водой сильно гидролизуется с выделением осадка гидратированного оксида (IV). Получается хлорированием металлического Германия или взаимодействием GeO2 с концентрированной НСl. Известны также дигалогениды Германия общей формулы GeX2, монохлорид GeCl, гексахлордигерман Ge2Cl6 и оксихлориды Германия (например, СеОСl2).

При комнатной температуре олово химически инертно к кислороду и воде. На воздухе олово постепенно покрывается защитной оксидной пленкой, которая повышает его коррозионную стойкость. С химической инертностью олова и его оксидной пленки в обычных условиях связано использование его в покрытии жестяной тары для продуктов питания, прежде всего – консервных банок. Олово легко наносится на сталь и продукты его коррозии безвредны. В соединениях олово проявляет две степени окисления: +2 и +4, причем соединения олова(II) в большинстве своем относительно нестабильны в разбавленных водных растворах и окисляются до соединений олова(IV) (их используют иногда как восстановители, например SnCl2). Разбавленные соляная и серная кислоты действуют на олово очень медленно, а концентрированные, особенно при нагревании, растворяют его, причем в соляной кислоте получается хлорид олова(II), а в серной – сульфат олова(IV). С азотной кислотой олово реагирует тем интенсивнее, чем выше концентрация и температура: в разбавленной HNO3 образуется растворимый нитрат олова(II), а в концентрированной HNO3 – нерастворимая b-оловянная кислота H2SnO3. Концентрированные щелочи растворяют олово с образованием станнитов – солей оловянистой кислоты H2SnO2; в растворах станниты существуют в гидроксоформе, например Na2[Sn(OH)4]. Наибольшее промышленное значение соединения олова(II) имеют в производстве гальванических покрытий. Соединения олова(IV) находят обширное промышленное применение.

Оксиды олова амфотерны, проявляют и кислотные, и основные свойства. Оксид олова(IV) встречается в природе в виде минерала касситерита, а чистый SnO2 получают из чистого металла; диоксид олова SnO2 применяется для приготовления белых глазурей и эмалей. Из SnO2 при взаимодействии со щелочами получают станнаты – соли оловянной кислоты, наиболее важные из которых – станнаты калия и натрия; растворы станнатов находят широкое применение как электролиты для осаждения олова и его сплавов. SnCl4 – тетрахлорид олова, исходное соединение для многих синтезов других соединений олова, включая и оловоорганические.

Cвинец образует два простых окисла РbО и РbО2, отвечающих его двух- и четырехвалентному состоянию, и два смешанных окисла Рb2О3 и Рb3O4, в которых одновременно проявляются обе валентности свинца. Желтый порошок окиси свинца (свинцовый глет) применяют для заполнения ячеек аккумуляторных пластин, при выработке некоторых сортов свинцового стекла. Сурик Рb3О4 — вещество ярко-красного цвета, применяется для приготовления масляной красной краски, защищающей железные и стальные конструкции (напр., корпусов морских судов) от коррозии. Двуокись свинца РbО2 — окислитель, применяется также в аккумуляторах.

Соединение Свинца с водородом РbН4 получается в небольших количествах при действии разбавленной соляной кислоты на Mg2Pb. PbH4 - бесцветный газ, который очень легко разлагается на Pb и Н2. При нагревании Свинец соединяется с галогенами, образуя галогениды РbХ2 (X -галоген). Все они малорастворимы в воде. Получены также галогениды РbХ4: тетрафторид PbF4 - бесцветные кристаллы и тетрахлорид РbСl4- желтая маслянистая жидкость. Оба соединения легко разлагаются, выделяя F2 или Cl2; гидролизуются водой.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]