Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Фейнман - 7. Физика сплошных сред.docx
Скачиваний:
13
Добавлен:
12.11.2018
Размер:
3.39 Mб
Скачать

1. Пузырьковая модель

Время от времени предлагались модели кристалла, в кото­рых атомы представлялись маленькими плавающими или под­вешенными магнитами, или же кружками, плавающими на поверхности воды и притягивающимися за счет капиллярных сил.

Эти модели имеют серьезные недостатки; например, в слу­чае плавающих и соприкасающихся объектов силы трения мешают их свободному относительному движению. Более серьез­ным недостатком является ограниченное число компонент, потому что приблизиться к положению дел в реальном кри­сталле можно только с большим числом компонент.

В настоящей работе описано поведение модели, в которой ато­мы представлены маленькими пузырьками диаметром от 0,1 до 2 мм, плавающими на поверхности мыльного раствора. Эти ма­ленькие пузырьки достаточно устойчивы для экспериментов дли­тельностью 1 час и более, они скользят друг по другу без трения и могут быть приготовлены в больших количествах. Ряд сним­ков для этой статьи был сделан на скоплениях, насчитываю­щих 100 000 пузырьков и более. Модель ближе всего соответствует поведению металлической структуры, потому что все пузырьки только одного типа и держатся вместе за счет общего капиллярного притяжения, которое изображает силу связи свободных электронов в металле. Краткое описание этой мо­дели было дано в работе Брэгга.

2. Способ образования пузырьков

Пузырьки выдуваются из тонкой пипетки, расположенной под поверхностью мыльного раствора. Наилучшие результаты мы получили с помощью раствора, состав которого нам сообщил мистер Грин из Королевского института: 15,2 см3 олеиновой кислоты (двойной дистилляции) тщательно взбалтывается с 50 см3 дистиллированной воды. Все это тщательно смеши­вается с 73см3 10%-ного раствора триэтаноламина, и всю смесь доливают водой до 200 см3. К этому добавляют 164 см3 чистого глицерина. Смеси дают отстояться и берут чистую жидкость внизу. В некоторых экспериментах ее разбавляли в тройном количестве (по объему) воды для уменьшения вязкости. Отвер­стие пипетки расположено примерно на 5 мм ниже уровня раствора. Постоянное давление воздуха (составлявшее 50—200 см водяного столба) поддерживается с помощью двух колб Винчестера. Обычно пузырьки удивительно однородны по размерам. Иногда вдруг они выходят беспорядочным обра­зом, но этого можно избежать, меняя пипетку или давле­ние. Ненужные пузырьки легко уничтожить, проведя над поверхностью слабым пламенем. На фиг. 1 (см. стр. 276) показан наш прибор. Мы сочли удобным зачернить дно сосуда, потому что в этом случае детали структуры, такие, как границы зерен и дислокации, проявляются более ярко.

На фиг. 2 (лист 1, стр. 284) показана часть «плота» или дву­мерного кристалла из пузырьков. О правильности расположения можно судить, если взглянуть на снимок под небольшим углом к плоскости страницы. Размер пузырьков меняется с апертурой (размером отверстия), но не зависит сколько-нибудь заметным образом от давления или глубины расположения отверстия ниже уровня раствора. Основной эффект, к которому приводит увеличение давления,— это увеличение скорости рождения пузырьков.

Например, толстостенная трубка с внутренним диамет­ром 49 мк и давлением 100 см образовывала пузырьки диаметром 1,2 мм. Тонкостенная трубка с внутренним диамет­ром 27 мк и давлением 180 см образовывала пузырьки диа­метром 0,6 мм. Пузырьки диаметром от 2 до 1 мм удобно называть «большими», диаметром от 0,8 до 0,6 мм — «сред­ними», а пузырьки диаметром от 0,3 до 1,1 мм — «маленькими», так как поведение пузырьков зависит от их размеров.

С помощью такого прибора нам не удалось уменьшить размеры отверстия и получить пузырьки диаметром менее 0,6 мм.

Поскольку было желательно поставить опыты с очень маленькими пузырьками, мы влили мыльный раствор во вра­щающийся сосуд и ввели тонкую трубочку, расположив как можно более точно параллельно линии потока. По мере образо­вания пузырьки уносятся и при постоянных условиях довольно близки по размерам. Образуются они со скоростью тысяча или более в секунду, причем издается пронзительный звук. При вращении сосуда мыльный раствор круто поднимается по его стенкам по всей окружности, а когда вращение прекращается, раствор уносит с собой большинство пузырьков. С помощью этого устройства, показанного на фиг. 3 (стр. 278), могут быть получены пузырьки диаметром до 0,12 мм. Так, тонкостенная трубка с поперечным отверстием 38 мк, при давлении воздуха 190 см водяного столба и скорости потока у отверстия в 180см/сек образует пузырьки диаметром 0,14 мм. В этом случае исполь­зовался сосуд диаметром 9,5 см, а скорость вращения достигала 6 оборотов в 1 сек.

На фиг. 4 (лист 1, стр. 284) приведен увеличенный сни­мок этих «маленьких» пузырьков, иллюстрирующий степень их регулярности; при вращении порядок получается не та­ким полным, как в неподвижном сосуде; когда смотришь в плоскости страницы, видно, что ряды слегка нерегулярны.

Эти двумерные кристаллы образуют структуры, которые, как полагают, существуют в металлах, и имитируют такие наблюденные эффекты, как границы зерен, дислокации и дру­гие дефекты, процессы скольжения, явление рекристаллизации и отжига и возникновение напряжений, вызванных «посторон­ними» атомами.