- •§ 1. Внутренняя геометрия кристаллов
- •§ 2. Химические связи в кристаллах
- •§ 3. Рост кристаллов
- •§ 4. Кристаллические решетки
- •§ 5. Симметрии в двух измерениях
- •§ 6. Симметрии в трех измерениях
- •§ 7. Прочность металлов
- •§ 8. Дислокации и рост кристаллов
- •§ 9. Модель кристалла по Брэггу и Наю
- •Глава 31
- •§ 2. Преобразование компонент тензора
- •§ 3. Эллипсоид энергии
- •§ 4. Другие тензоры; тензор инерции
- •§ 5. Векторное произведение
- •§ 6. Тензор напряжений
- •§ 7. Тензоры высших рангов
- •§ 8. Четырехмерный тензор электромагнитного импульса
- •§ 2. Уравнения Максвелла в диэлектрике
- •§ 3. Волны в диэлектрике
- •§ 4. Комплексный показатель преломления
- •§ 5. Показатель преломления смеси
- •§ 6. Волны в металлах
- •§ 7. Низкочастотное и высокочастотное приближения; глубина скин-слоя и плазменная частота
- •Глава 33
- •§ 2. Волны в плотных материалах
- •§ 3. Граничные условия
- •§ 4. Отраженная и преломленная волны
- •§ 5. Отражение от металлов
- •§ 6. Полное внутреннее отражение
- •Глава 34
- •§ 2. Магнитные моменты и момент количества движения
- •§ 3. Прецессия атомных магнитиков
- •§ 4. Диамагнетизм
- •§ 5. Теорема Лармора
- •§ 6. В классической физике пет ни диамагнетизма, ни парамагнетизма
- •§ 7. Момент количества движения в квантовой механике
- •§ 8. Магнитная энергия атомов
- •Глава 35
- •§ 2. Опыт Штерна — Герлаха
- •§ 3. Метод молекулярных пучков Раби
- •§ 4. Парамагнетизм
- •§ 5. Охлаждение адиабатическим размагничиванием
- •§ 6. Ядерный магнитный резонанс
- •Глава 36 ферромагнетизм
- •§ 2. Поле н
- •§ 3. Кривая намагничивания
- •§ 4. Индуктивность с железным сердечником
- •§ 5. Электромагниты
- •§ 6. Спонтанная намагниченность
- •Глава 37
- •§ 2. Термодинамические свойства
- •§ 3. Петля гистерезиса
- •§ 4. Ферромагнитные материалы
- •§ 5. Необычные магнитные материалы
- •§ 2. Однородная деформация
- •§ 3. Кручение стержня; волны сдвига
- •Собирая теперь все воедино, находим
- •§ 4. Изгибание балки
- •§ 5. Продольный изгиб
- •Глава 39
- •§ 2. Тензор упругости
- •§ 3. Движения в упругом теле
- •§ 4. Неупругое поведение
- •§ 5. Вычисление упругих постоянных
- •Течение «сухой» воды
- •§ 2. Уравнение движения
- •§ 3. Стационарный поток; теорема Бернулли
- •§ 4. Циркуляция
- •§ 5. Вихревые линии
- •§ 2. Вязкий поток
- •§ 3. Число Рейнольдса
- •§ 4. Обтекание кругового цилиндра
- •§ 5. Предел пулевой вязкости
- •§ 6. Поток Куеттэ
- •2. Method of formation
- •Sir Lawrence Bragg and j. F. Nye
- •3. Grain boundaries
- •4. Dislocations
- •1. Пузырьковая модель
- •2. Способ образования пузырьков
- •3. Границы зёрен
- •4. Дислокации
§ 2. Волны в плотных материалах
Прежде всего я напомню вам об удобном способе описания синусоидальных плоских волн, которым мы пользовались в гл. 36 (вып. 3). Любая компонента поля в волне (возьмем, например, Е) может быть записана в форме
E=E0ei(t-k•r), (33.6)
где Е — амплитуда поля в точке г (относительно начала координат) в момент t. Вектор k указывает направление распространения волны, а его величина |k|=k=2 равна волновому числу. Фазовая скорость волны vфаз=/k для света в материале с показателем n будет равна c/n, поэтому
k=n/c. (33.7)
Предположим, что вектор k направлен по оси z; тогда k•r будет просто хорошо знакомым нам kz. Для вектора k в любом другом направлении z следует заменить на rk — расстояние от начала в направлении вектора k, т. е. kz мы должны заменить на krk, что как раз равно k•r (фиг. 33.2).

Фиг. 33.2. Фаза волны в точке Р, распространяющейся в направлении k, равна (t-k•r).
Таким образом, запись (33.6) является удобным представлением волны, идущей в любом направлении.
Разумеется, при этом мы должны помнить, что
k•r=kxx+kyy+k:zz,
где kx, ky и kz — компоненты вектора k по трем осям. Мы уже отмечали однажды, что на самом деле величины (, kx, ky, kz) образуют четырехвектор и что его скалярное произведение на (t, x, у, z) является инвариантом. Таким образом, фаза волны есть инвариант и формулу (33.6) можно записать в виде
![]()
Однако сейчас нам такие хитрости не понадобятся.
Для синусоидального поля Е, подобного выражению (33.6), производная dE/дt — это то же самое, что и iE, a дЕ/дх — то же, что и ikxE, и аналогично для остальных компонент. Вы видите, чем удобна форма (33.6): когда мы работаем с дифференциальными уравнениями, то дифференцирование заменяется простым умножением. Другое полезное качество состоит в том, что операция =(д/дx), (д/ду), (д/дz) заменяется тремя умножениями (-ikx,-iky , -ikz). Но эти три множителя преобразуются как компоненты вектора k, так что оператор заменяется умножением на

Правило остается справедливым для операции в любой комбинации, будь то градиент, дивергенция или ротор. Например, z-компонента XЕ равна

Если и Еу и Ех изменяются как e-ik•r, то мы получаем
-ikxEy+ikyEx,
что представляет, как вы видите, z-компоненту —ikXЕ.
Таким образом, мы получили очень полезный общий закон, что в любом случае, когда вам нужно взять градиент от вектора, который изменяется, как волна в трехмерном пространстве (а они в физике играют важную роль), эту операцию вы можете проделать быстро и почти без всяких раздумий, если вспомните, что оператор эквивалентен умножению на —ik.
Например, уравнение Фарадея
XЕ=дB/дt
превращается для волны в
— ikXЕ=-iB. Оно говорит, что
В=kXE/. (33.9)
Это соответствует результату, найденному ранее для волн в пустом пространстве, т. е. что вектор В в волне направлен под прямым углом к вектору Е и направлению распространения волны. (В пустом пространстве /k=с.) Знак в уравнении (33.9) вы можете проверить, исходя из того, что k является направлением вектора Пойнтинга S=0c2(EXВ).
Если вы примените то же самое правило к другим уравнениям Максвелла, то снова получите результаты последней главы, в частности
![]()
Но раз уже это известно нам, давайте не будем проделывать все сначала.
Если вы хотите поразвлечься, можете попытаться решить такую устрашающую задачу (в 1890 г. она предлагалась студентам на выпускных экзаменах): решите уравнения Максвелла для плоской волны в анизотропном кристалле, т. е. когда поляризация Р связана с электрическим полем Е через тензор поляризуемости. Конечно, в качестве ваших осей вы выберете главные оси тензора, так что связи при этом упростятся (тогда Рх=aЕх, Ру=bЕу, a Pz=cEz), но направление волны и ее поляризация пусть останутся произвольными. Вы должны найти соотношение между Е и В и определить, как изменяется k с направлением распространения волны и ее поляризацией. После этого вам будет понятна оптика анизотропного кристалла. Лучше начать с более легкого случая дважды лучепреломляющего кристалла, подобного турмалину, для которого два коэффициента поляризуемости равны между собой (например, b=c), и попытаться понять, почему, когда мы смотрим через такой кристалл, мы видим два изображения. Если это вам удастся, тогда испытайте свои силы на более трудном случае, когда все три а различны. После этого вам уже будет ясен уровень ваших знаний — знаете ли вы столько же, сколько студент, заканчивавший университет в 1890 г. Но мы с вами в этой главе будем рассматривать только изотропные вещества.
Из опыта вам известно, что когда на границу раздела двух материалов, скажем воздуха и стекла или воды и бензина, попадает плоская волна, то возникают как отраженная, так и преломленная волны.
Предположим, что, кроме этого факта, нам больше ничего неизвестно, и посмотрим, что можно из него вывести. Выберем наши оси так, чтобы плоскость yz совпадала с поверхностью раздела, а плоскость ху была перпендикулярна фронту волны (фиг. 33.3).

Фиг. 33.3. Векторы, распространения k, k' и k" для падающей, отраженной и преломленной волн.
Электрический вектор в падающей волне может быть записан в виде
![]()
Поскольку вектор k перпендикулярен оси z, то
k•r=kxx+kyy. (33.12) Отраженную волну мы запишем как
![]()
так что ее частота равна ', волновое число k', а амплитуда Е'0. (Мы, конечно, знаем, что частота и величина вектора k в отраженной волне те же, что и в падающей волне, но не хотим предполагать даже это. Пусть это все получится само собой из математического аппарата.) Наконец, запишем преломленную волну:
![]()
Вы знаете, что одно из уравнений Максвелла дает соотношение (33.9), так что для каждой из волн
![]()
Кроме того, если показатели преломления двух сред мы обозначим через n1 и n2, то из уравнения (33.10) получится
![]()
Поскольку отраженная волна находится в том же материале, то
![]()
в то время как для преломленной волны
![]()
