Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Предел и непрерывность.doc
Скачиваний:
44
Добавлен:
10.11.2018
Размер:
5.03 Mб
Скачать

Односторонние пределы

Понятие предела характеризует поведение функции при неограниченном приближении ее аргумента к точке . Однако ее поведение может быть различным в зависимости от того, с какой стороны приближается к . Опираясь на понятия правой и левой -полуокрестностей точки , можно сформулировать определения односторонних пределов.

Определение 5.4. Число является пределом справа функции в точке (или при , стремящемся к справа), если для любого положительного числа можно указать такое положительное число , что для всех выполнено неравенство:

.

Этот факт записывается следующим образом:

.

Аналогично, число является пределом слева функции в точке (или при , стремящемся к слева), если для любого положительного числа можно указать такое положительное число , что для всех выполнено неравенство:

.

Этот факт обозначается следующим образом:

.

Примером функции, имеющей в ряде точек различные пределы слева и справа, является функция , график которой приведен на рис. 1.1.

Сопоставляя определения 5.2 и 5.4, получаем утверждение о необходимом и достаточном условии существования предела функции в точке.

Теорема 5.1. Для того, чтобы функция имела предел в точке (), необходимо и достаточно, чтобы в этой точке существовали ее пределы слева и справа и чтобы они были равны между собой, то есть

.

Доказательство.

Необходимость. Покажем, что из существования конечного предела функции в точке следует существование ее односторонних пределов в этой точке и равенство их друг другу. Пусть существует. Это означает, что для произвольного числа можно указать такое число , что неравенство будет выполнено для всех . Следовательно, неравенство будет выполнено как для всех , так и для всех . Таким образом, существует и существует .

Достаточность. Покажем, что из существования и равенства односторонних пределов в точке следует существование предела функции в этой точке. Пусть и . Это означает, что, задавшись произвольным , по нему можно найти такие два числа и , что для всех и будет выполнено неравенство . Пусть . Указано такое , что неравенство будет выполнено как для всех , так и для всех . Таким образом, для всех выполнено неравенство , то есть . Теорема доказана.

Роль пределов справа и слева в бесконечно удаленной точке играют пределы «при , стремящемся к » и «при , стремящемся к ». Дадим соответствующее определение.

Определение 5.4. Число называется пределом функции при , стремящемся к ( ), если для любого положительного числа найдется такое число , что для всех , удовлетворяющих неравенству () выполнено

.

Соответствующие обозначения таковы:

().

Свойства предела функции

Теорема 5.2 (единственность предела). Если функция имеет предел в точке (в бесконечно удаленной точке), то этот предел единственен.

Доказательство. Предположим, что в рассматриваемой точке функция имеет два конечных предела и , причем . Тогда, по определению 5.1

,

,

где , – бесконечно малые в рассматриваемой точке функции.

Следовательно,

.

Но такое равенство невозможно, так как – положительное число, а – бесконечно малая функция, которая в некоторой окрестности рассматриваемой точки становится меньше любого заданного положительного числа.

Полученным противоречием теорема доказана.

Теорема 5.3 (ограниченность функции, имеющей конечный предел). Если функция имеет конечный предел в точке (в бесконечно удаленной точке), то она локально ограничена (ограничена) в этой точке.

Доказательство. Выберем и укажем по нему () из определения 2.6 (2.7). Тогда в проколотой -окрестности точки (- окрестности бесконечно удаленной точки) выполнены неравенства:

,

что по определению 2.4 (2.5) означает локальную ограниченность (ограниченность) функции в рассматриваемой точке.

Теорема 5.4 (предельный переход в неравенстве). Пусть функции и с областью определения имеют пределы и в точке (в бесконечно удаленной точке). Если в некоторой проколотой окрестности точки (окрестности бесконечно удаленной точки) выполнено неравенство

,

то

.

Доказательство. Проведем доказательство аналогично доказательству теоремы 5.2. Предполагая, что , воспользуемся представлениями

,

,

где , – бесконечно малые в рассматриваемой точке функции.

Поскольку по условию теоремы , должно выполняться неравенство

.

Но так как – бесконечно малая функция, то ее модуль в некоторой окрестности точки (окрестности бесконечно удаленной точки) становится меньше любого заданного положительного числа, в том числе можно указать такую окрестность, в которой будет выполнено . Поэтому в этой окрестности выполнено неравенство:

.

Полученным противоречием теорема доказана.

Теорема 5.5 (теорема о сжатой переменной). Пусть функции , и имеют область определения . Пусть в некоторой проколотой окрестности точки (окрестности бесконечно удаленной точки) выполнены неравенства

.

Пусть, кроме того,

.

Тогда

.

Доказательство. Из условия теоремы следует, что в некоторой окрестности , где , (, где ) справедливы неравенства:

.

Выберем произвольное и укажем по нему () такое, что для всех () выполнено

,

.

Тогда для всех () выполнено

,

откуда

.

Теорема доказана.