
- •Закон Кулона
- •Электростатическое поле. Напряженность электростатического поля
- •Потенциал электростатического поля
- •Принцип суперпозиции электростатических полей.
- •Проводники в электростатическом поле
- •Типы диэлектриков. Поляризация диэлектриков
- •Поляризованность. Напряженность поля в диэлектрике
- •Тема 1.2 Электроёмкость Конденсаторы. Соединения конденсаторов. Энергия
- •Электрическая емкость уединенного проводника
- •Конденсаторы
- •Тема 1.3 Электрические цепи постоянного тока
- •Сторонние силы. Электродвижущая сила и напряжение
- •. Закон Ома. Сопротивление проводников
- •Работа и мощность тока. Закон Джоуля — Ленца
- •Закон Ома для неоднородного участка цепи
- •Тема 1.4 Основы расчета электрических цепей постоянного тока
- •Раздел 2 электромагнетизм
- •Тема 2.1 Основные свойства и характеристики магнитного поля
- •Магнитное поле и его характеристики
- •Закон Био — Савара — Лапласа и его применение к расчету магнитного поля
- •Закон Ампера. Взаимодействие параллельных токов
- •Магнитная постоянная. Единицы магнитной индукции и напряженности магнитного поля
- •. Магнитное поле движущегося заряда
- •Действие магнитного поля на движущийся заряд
- •Движение заряженных частиц в магнитном поле
- •Тема 2.2 Электромагнитная индукция
- •Поток вектора магнитной индукции
- •Работа по перемещению проводника и контура с током в магнитном поле
- •Явление электромагнитной индукции (опыты Фарадея)
- •Закон Фарадея
- •Индуктивность контура. Самоиндукция
- •Намагниченность. Магнитное поле в веществе
- •§ 134. Условия на границе раздела двух магнетиков
- •Ферромагнетики и их свойства
- •Природа ферромагнетизма
- •Магнитные поля соленоида и тороида
- •Энергия магнитного поля
- •Раздел 3 однофазные электрические цепи переменного тока
- •Тема 3.1 Однофазный переменный ток. Получение переменного тока. Действующее
- •Тема 3.2 Метод векторных диаграмм Цепь переменного тока с активным
- •Тема 3.3 Расчет цепей переменного тока
- •Раздел 4 трансформаторы
- •Тема 4.1 Трансформаторы
- •Раздел 5 электроника физические основы электроники.
- •Тема 5.1 Электрофизические свойства полупроводников
- •Тема 5.2 Полупроводниковые диоды
- •Раздел 6 электронные выпрямители и стабилизаторы
- •Тема 6.1 Выпрямительные устройства
- •Тема 6.2 Сглаживающие фильтры
- •Тема 6.3 Стабилизаторы напряжения и тока
- •Раздел 7. Химические источники электроэнергии
- •Тема 7.1 Химические источники электроэнергии
- •1. Преобразование химической энергии в электрическую
- •2. Преобразование электрической энергии в химическую
- •Раздел8 Изображение несинусоидальных токов и .Напряжений с помощью
- •Тема 8.1 Изображение несинусоидальных токов и .Напряжений с помощью
- •Раздел 9
- •Тема 9.1 уравнения длинной линии
- •Основные уравиения длинной линии
- •Характеристики длинной линии
- •Холостой ход
- •Короткое замыкание
- •Стоячая волна
- •Бегущая волна
- •Волновое сопротивление. Длина волны
- •Режим с согласованной нагрузкой
- •Режим с несогласованной нагрузкой
- •Электромагнитная волна с прямоугольным фронтом
- •Раздел10. Организация электропитания средств вычислительной
- •Тема 10.1 организация электропитания средств вычислительной
Движение заряженных частиц в магнитном поле
Выражение для силы Лоренца (114.1) позволяет найти ряд закономерностей движения заряженных частиц в магнитном поле. Направление силы Лоренца и направление вызываемого ею отклонения заряженной частицы в магнитном поле зависят от знака заряда Q частицы. На этом основано определение знака заряда частиц, движущихся в магнитных полях.
Для вывода общих закономерностей будем считать, что магнитное поле однородно и на частицы электрические поля не действуют. Если заряженная частица движется в магнитном поле со скоростью v вдоль линий магнитной индукции, то угол между векторами v и В равен 0 или . Тогда по формуле (114.1) сила Лоренца равна нулю, т. е. магнитное поле на частицу не действует и она движется равномерно и прямолинейно.
Если заряженная частица движется в магнитном поле со скоростью v, перпендикулярной вектору В, то сила Лоренца F=Q[vB] постоянна по модулю и нормальна к траектории частицы. Согласно второму закону Ньютона, эта сила создает центростремительное ускорение. Отсюда следует, что частица будет двигаться по окружности, радиус r которой определяется из условия QvB=mv2/r откуда
(115.1)
Период вращения частицы, т. е. время Т, за которое она совершает один полный оборот,
Подставив сюда выражение (115.1), получим
(115.2)
т. е. период вращения частицы в однородном магнитном поле определяется только величиной, обратной удельному заряду (Q/m) частицы, и магнитной индукцией поля, но не зависит от ее скорости (при v<<c). На этом основано действие циклических ускорителей заряженных частиц
Если
скорость v заряженной
частицы направлена под углом
к вектору В (рис. 170), то ее движение
можно представить в виде суперпозиции:
1) равномерного прямолинейного
движения вдоль поля со скоростью
v||=vcos
; 2) равномерного движения со скоростью
v=vsin
по окружности в плоскости, перпендикулярной
полю. Радиус окружности определяется
формулой (115.1) (в данном случае надо
заменить v на v=vsin).
В результате сложения обоих движений
возникает движение по спирали, ось
которой параллельна магнитному полю
(рис. 170). Шаг винтовой линии
Подставив в последнее выражение (115.2), получим
Направление, в котором закручивается спираль, зависит от знака заряда частицы.
Если скорость v заряженной частицы составляет угол с направлением вектора В неоднородного магнитного поля, индукция которого возрастает в направлении движения частицы, то r и h уменьшаются с ростом В. На этом основана фокусировка заряженных частиц в магнитном поле.
Литература:
1. Жаворонков М.А., Кузин А.В. Электротехника и электроника. Москва,
АСАДЕМ!А, 2005.
2. Касаткин А.С., Немцов М.В. Электротехника. Москва, Высшая школа, 2003
3. Петленко Б.И. Электротехника и электроника. Москва,
АСАДЕМ!А, 2004.
4. Шихин А.Я. Электротехника. Москва, Высшая школа, 2001
5. Берикашвили В.Ш., Черепанов А.К. Электронная техника. Москва,
АСАДЕМ!А, 2005.
6. Трофимова Т.И., Курс физики. Москва, Высшая школа, 2003
Тема 2.2 Электромагнитная индукция
Самоиндукция. Индуктивность. ЭДС самоиндукции. Закон Ампера для элементов тока. Энергия магнитного поля.