Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Основы микропроцессорной техники.doc
Скачиваний:
84
Добавлен:
03.11.2018
Размер:
10.37 Mб
Скачать

5.7. Быстродействие озу

Быстродействие процессора выражается в мегагерцах (МГц), а быстродействие запоминающего устройства и его эффективность — в наносекундах (нс.

Наносекунда — это одна миллиардная доля секунды, т. е. очень короткий промежуток времени. Заметьте, что скорость света в вакууме равна 299792 км/с. За одну миллиардную долю секунды световой луч проходит расстояние, равное всего лишь 29,98 см, т.е. меньше длины обычной линейки!

Рабочая частота современных процессоров достигает 3000 и более МГц (3 ГГц, или 3 млрд. циклов в секунду), а в следующем году, как ожидается, возрастет до 4 ГГц.

Очень легко запутаться, сравнивая, например, процессор и модули памяти, быстродействие которых выражено в разных единицах.

Как можно заметить, при увеличении тактовой частоты продолжительность цикла уменьшается, а быстродействие, соответствующее 60 нс памяти DRAM, используемой в обычном компьютере, мизерно по сравнению с процессором, работающим на частоте 400 МГц и выше. Заметьте, что до недавнего времени большинство микросхем DRAM, используемых в персональных компьютерах, имели время доступа 60 нс, которое равнозначно тактовой частоте 16,7 МГц! Поскольку эта "медленная" память устанавливается в системы, в которых процессор работает на частоте 300 МГц и выше, возникает несоответствие между эффективностью оперативной памяти и процессора. В 2000 году чаще всего применялась память, РС100 или РС1ЭЗ, которая работает на частоте 100 или 133 МГц соответственно. Начиная с 2001 года, память стандартов DDR (200 и 266 МГц) и RDRAM (800 МГц) стала завоевывать все большую популярность. В 2002 году появились модули памяти стандарта DDR с частотой 333 и 400 МГц, а также стандарта RDRAM с частотой 1 066 МГц.

Поскольку транзисторы для каждого бита в микросхеме памяти размещены в узлах решетки, наиболее рационально адресовать каждый транзистор, используя номер столбца и строки. Сначала выбирается строка, затем столбец адреса и, наконец, пересылаются данные. Начальная установка строки и столбца адреса занимает определенное время, обычно называемое временем задержки или ожиданием. Время доступа для памяти равно времени задержки для выборки столбца и строки адреса плюс продолжительность цикла. Если длительность цикла памяти равна 7,5 нс (133 МГц), а длительность цикла процессора — 1 нс (1 ГГц), то процессор должен находиться в состоянии ожидания приблизительно 6 циклов – до 17 –го цикла, т.е. до поступления данных. Таким образом, состояние ожидания замедляют работу процессора настолько, что он вполне может функционировать на частоте 133 МГц.

Эта проблема существовала на протяжении всей компьютерной эпохи. Для успешного взаимодействия процессора с более медленной основной памятью обычно требовалось несколько уровней высокоскоростной кэш-памяти.

Как правило, компьютер работает гораздо быстрее, если пропускная способность шины памяти соответствует пропускной способности шины процессора. Сравнивая скорость шины памяти с быстродействием шины процессора, можно заметить, что между этими параметрами существует определенное соответствие. Тип памяти, пропускная способность которой соответствует скорости передачи данных процессора, является наиболее приемлемым вариантом для систем, использующих соответствующий процессор.

Процессор и основная оперативная память разделены кэш-памятью первого и второго ровней, поэтому эффективность основной памяти зачастую ниже рабочей частоты процессора. Следует заметить, что в последнее время в системах, в которых используются модули памяти SDRAM, DDR SDRAM и RDRAM, тактовая частота шины памяти достигает рабочей частоты шины процессора. Если скорость шины памяти равняется частоте шины процессора, быстродействие памяти в такой системе будет оптимальным.

Группа ОЗУ делится на две подгруппы. Если ОЗУ содержит в качестве элементарных ячеек памяти цепи типа триггеров, оно называется статическим ОЗУ (или статической оперативной памятью); динамические ОЗУ строятся более просто и основаны на свойствах электрической емкости, но они должны подтверждать содержимое ячеек примерно несколько сотен раз в секунду. Статические ОЗУ не нуждаются ни в каком подтверждении, и их двоичное содержимое сохраняется до тех пор, пока сохраняется питание ИС.