Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
phisics.doc
Скачиваний:
4
Добавлен:
28.10.2018
Размер:
2.48 Mб
Скачать

3.1 Диффузия

Это перенос массы из мест с большей плотностью к местам с меньшей плотностью.

Фик (1855 г) установил, что перенесенная масса dm через расположенную перпендикулярно направлению переноса вещества площадку dS за время dt

dm= - D(d/dx) dS dt, (1)

где d/dx характеризует скорость изменения плотности на единицу длины x,

D – коэффициент диффузии.

Можно показать, что для газов . (2)

Знак минус в (1) указывает, что перенос массы при диффузии происходит в направлении убывании плотности, т. е. вдоль оси ох, если 2>1 (d/dx<0).

    1. Теплопроводность

Это перенос теплоты (внутренней энергии) от более нагретых мест к менее нагретым. Фурье (1822 г.) установил, что количество теплоты , которое переносится вследствие теплопроводности через площадку dS за время

dQ= -(dT/dx) dS dt, (3)

где характеризует скорость изменения температуры Т на единицу длинны х, (греч. хи) – коэффициент теплопроводности. Можно показать, что для газов

(4)

где сV - удельная теплоемкость при постоянном объеме газа.

Знак минус в (3) указывает, что при теплопроводности перенос внутренней энергии происходит в направлении убывания температуры, т. е. вдоль оси ОХ, если .

3.3 Внутреннее трение (вязкость)

Оно возникает между слоями жидкости или газа, движущимися упорядоченно с различными скоростями u. Из-за хаотического теплового движения происходит обмен молекулами между слоями, в результате чего импульс слоя, движущегося быстрее, уменьшается, а движущегося медленнее – увеличивается, что приводит к торможению слоя, движущегося быстрее и ускорению слоя, движущегося медленнее.

Согласно закону Ньютона (1687 г) сила внутреннего трения между слоями газа (жидкости) , (5)

где (du/dx) характеризует быстроту изменения скорости u на единицу длины x , S – площадь, на которую действует сила (площадка S перпендикулярна х), – коэффициент внутреннего трения (динамическая вязкость)

Можно показать, что (6)

Знак минус в (5) указывает, что импульс переносится в направлении убывания скорости слоев u.

Анализ формул (2), (4), (6) показывает, что

<>/(cV)=1. (7)

Используя эти формулы, можно по найденным из опыта одним величинам, определить другие.

Лекция 4,5. Физические основы термодинамики

Термодинамика, как и молекулярная физика, занимается изучением физических процессов, происходящих в макроскопических системах, т.е. в телах, содержащих огромное число микрочастиц, взаимодействующих друг с другом и внешними телами.

Задачей термодинамического метода изучения состояний макроскопических систем является установление связей между непосредственно наблюдаемыми величинами, такими, как давление, объем, температура, концентрация раствора, напряженность электрического или магнитного поля, световой поток и т.д. Никакие величины, связанные с атомно-молекулярной структурой вещества ( размеры атома или молекулы, их масса, количество и т.д.), не входят в рассмотрение при термодинамическом подходе к решению задач.

Термодинамический метод, не связанный с модельными представлениями, обладает большей общностью, отличается простотой и ведет, после ряда простых математических процедур, к решению целого ряда конкретных задач, не требуя никаких сведений о свойствах атомов или молекул.

Однако при термодинамическом рассмотрении остается нераскрытым внутренний (атомно-молекулярный) механизм явлений. По этой причине в термодинамике, как правило, бессмысленны вопросы “почему”? Например, почему при быстром растяжении медная проволока охлаждается, а резиновый жгут нагревается? Мы должны удовлетворить этим результатам, а механизм, ведущий к нему, остается скрытым от нас.

В основе термодинамики лежат принципы, являющиеся обобщение опытных данных: принцип температуры (часто называемый нулевым началом термодинамики), принцип энергии (I начало), принцип энтропии (II начало) и постулат Нернста (III начало термодинамики).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]