Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
phisics.doc
Скачиваний:
4
Добавлен:
28.10.2018
Размер:
2.48 Mб
Скачать
    1. Распределение Максвелла-Больцмана

В 1866 г. Больцман (1844-1906 г.) вывел более общее распределение, включающее распределение Максвелла, которое называется распределением Максвелла-Больцмана

(33)

где - импульс частицы, в частности молекулы газа, - радиус-вектор, характеризующий положение частицы, p2/2m0=Wк – кинетическая энергия частицы, - потенциальная энергия частицы.

Распределение (33) можно записать в виде распределения по полной энергии Е частиц

f(E)=Aexp(-E/kT), (34)

где E=Wк+Wп - полная энергия частицы.

    1. Среднее число столкновений и средняя длина свободного пробега молекул

Молекулы газа, находясь в состоянии хаотического движения, непрерывно сталкиваются друг с другом.

Между двумя последовательными столкновениями молекулы проходят некоторое расстояние , которое называется длиной свободного пробега молекул.

Эти расстояния могут быть самыми разными. Поэтому в кинетической теории вводится понятие средней длины свободного пробега молекул <>.

При вычислении <> необходимо принять определенную модель газа. Будем считать, что молекулы представляют собой шарики некоторого диаметра d порядка 10-10 м, зависящего от природы газа.

Двигаясь со средней скоростью <v>, молекула столкнется только с теми молекулами, центры которых находятся в цилиндре радиуса d.

Среднее число столкновений <z>, которое испытает молекула с другими неподвижными молекулами за время t, будет равно числу молекул внутри цилиндра, диаметр которого 2d и длина <v>t, т.е. <z>=d2<v>tn, где n - концентрация молекул.

Расчеты показывают, что при учете движения других молекул

<z>=d2 <v>tn. (36)

Тогда средняя длина свободного пробега молекул

<>=<v>t/<z>=1/(d2n), (37)

т.е. обратно пропорциональна концентрации молекул (или давлению P т. к., Р=nkT). Можно показать, что при нормальных условиях < > ≈ 10-7 м и число столкновений за 1 секунду < z> /t≈1010 c-1.

Лекция 3. Явления переноса

До сих пор мы рассматривали исключительно равновесные системы, характеризующиеся при постоянных внешних условиях неизменностью параметров (Р, V, T, ) во времени и отсутствием в системе потоков вещества, энергии, импульса.

Однако, беспорядочность теплового движения молекул газа, непрерывные столкновения между ними приводят к постоянному перемешиванию частиц и изменению их скоростей и энергий. Если в газе существует пространственная неоднородность плотности, температуры, скорости упорядоченного перемещения отдельных слоев, то происходит самопроизвольное выравнивание этих неоднородностей. В газе возникают потоки вещества, энергии, импульса упорядоченного движения молекул.

Эти потоки, характерные для неравновесных состояний газа, являются физической основой особых процессов, объединенных общим названием ”явления переноса ”. К этим явлениям относятся диффузия, теплопроводность и внутреннее трение. Для простоты ограничимся одномерными явлениями переноса. Систему отсчета выберем так, чтобы ось х была ориентирована в направлении переноса

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]