
- •Утверждаю
- •План Основы построения и эксплуатации рэт ртв пво
- •Тема 1 основные принципы и методы радиолокации
- •Учебные вопросы и распределение времени (слайд №3).
- •Задачи курса обучения
- •Основные определения радиолокации
- •Первый принцип радиолокации
- •Диффузное или рассеянное отражение
- •Дифракция
- •Второй принцип радиолокации
- •Третий принцип радиолокации
- •Так как за время tз волна проходит расстояние, равное удвоенной дальности, то
- •Четвертый учебный вопрос Виды радиолокации
- •Заключительная часть
- •Руководитель занятия:
- •Учебные вопросы и распределение времени (слайд №3).
- •1. Местоположение летательного аппарата относительно рлс определяется тремя пространственными координатами
- •3. Виды радиолокации
- •Параметры рлс
- •Параметры цели
- •Из последней формулы определим дальность действия рлс
- •А. Влияние параметров передатчика (Ри) Из уравнения (1) следует, что
- •Б. Влияние параметров антенны (g и Sa)
- •Эффективная отражающая поверхность цели учитывает:
- •Поскольку сложного объекта (ракеты, самолета и т.П.) рассчитать достаточно трудно, то практически её определяют экспериментальным путем. При расчетах можно использовать следующие данные в м2.
- •Поскольку Rз во много раз больше ha и Нц, то
- •Рефракция и сверхрефракция
- •Подполковник запаса ж.Атчабаров
- •Учебные вопросы и распределение времени (слайд №3).
- •Наибольшее распространение и радиолокационной технике получил импульсный метод. Импульсный метод радиолокации
- •Принцип работы импульсной рлс
- •Заключительная часть
- •Утверждаю
- •Учебные вопросы и распределение времени (слайд №3).
- •Отношение длительности импульса на входе сжимающего фильтра τu к длительности импульса на выходе τu2 называется коэффициентом сжатия к
- •Второй учебный вопрос.
- •На изменение фазы отраженного сигнала влияет радиальная составляющая νr скорости цели.
- •Отраженный сигнал от цели запишется
- •Метод пеленгации по максимуму
- •Метод пеленгации по минимуму
- •Метод равносигнальной зоны
- •Заключительная часть
- •Подполковник запаса ж.Атчабаров
- •Круговой обзор
- •Секторный обзор
- •Винтовой обзор
- •Спиральный обзор
- •Конический обзор
- •Пилообразный обзор
- •Строчный обзор
- •Принцип измерения высоты целей в современных рлс
- •Заключительная часть
- •Утверждаю
- •Поскольку Rз во много раз больше ha и Нц, то
- •Подполковник запаса ж.Атчабаров
Спиральный обзор
Спиральный
обзор пространства представляет
комбинацию вращения диаграммы
направленности с одновременным изменением
угла между осью вращения и осью диаграммы
направленности (рис. 5.3, слайд 38, 54).
Спиральный обзор может применяться
только для обзора узкого сектора
пространства, ограниченного по азимуту
и углу места.
Шаг спирали не должен превышать половину ширины ДНА в вертикальной плоскости θ0,5р/2, чтобы в просматриваемом пространстве не было пропусков целей.
При спиральном обзоре для определения угловых координат целесообразно использовать индикатор со спиральной разверткой, в которой луч ЭЛТ повторяет движение ДНА.
Спиральный обзор пространства применяется в самолетных РЛС для обзора передней и задней полусфер.
Конический обзор
Конический
обзор является разновидностью спирального
обзора, при котором угол наклона оси
ДНА не изменяется. При этом методе узкая
диаграмма направленности вращается в
пространстве, образуя конус с вершиной
у антенны. Каждая точка ДНА описывает
в пространстве окружность (рис. 5.4, слайд
39, 55).
Если объект наблюдения находится на оси конуса в точке А, то он подвергается постоянному по величине облучению, несмотря на вращение ДНА, и имеет постоянную интенсивность свечения на экране ЭЛТ индикатора. Если объект находится не на оси, то при вращении ДНА по окружности интенсивность его будет меняться. Это даст возможность определить с большой точностью угловых координаты цели по интенсивности свечения отметки от цели.
Конический обзор применяется в РЛС наведения ракет, автосопровождения целей по угловым координатам.
Пилообразный обзор
Пилообразный обзор
пространства достигается путем качания
антенны в пределах заданного сектора
по углу места 2Δε
с одновременным
вращением по азимуту βо
(рис. 5.5, слайд 40, 56).
Пилообразный обзор применяется в радиолокационный станциях, предназначенных для измерения высоты целей (радиовысотомерах).
Диаграмма направленности радиовысотомеров создается сильно сжатой в вертикальной плоскости θо = 1...2о и несколько расширенной в горизонтальной плоскости φо = 2...4о . Период качания Ткач и скорость вращения антенны по азимуту выбирается из условия получения минимального числа отраженных импульсов Nобл min, необходимых для обнаружения целей.
где
- угловая скорость качания антенны в
вертикальной плоскости.
Найдем время, за которое антенна переместится в вертикальной плоскости на угол, равный ширине ДНА θ0,5р
.
Зная, что Nобл = tобл ∙ Fn > Nобл min, тогда
или
(5.3)
Из
данной формулы видно, что период качания
антенны Ткач
в заданном секторе
должен быть согласован с шириной ДНАθ0,5р
и частотой повторения зондирующих
импульсов Fn
, чтобы обеспечить облучение каждой
точки пространства обзора, то есть
надежного обнаружения целей.
С целью исключения «пропусков» целей за один период качания Ткач в вертикальной плоскости антенна должна перемещаться по азимуту на величину не более, чем ширина ДНА в горизонтальной плоскости φо0,5 , то есть за Ткач антенна перемещается по азимуту на угол k∙ φо0,5 ? , где k – коэффициент перекрытия (k < 1), тогда
(5.4)
Вращение ДНА в горизонтальной плоскости должно обеспечивать не только хорошую наблюдаемость каждой цели за период качания антенны, но и возможность определения координат. Поэтому при пилообразном методе обзора скорость кругового вращения выбирается довольно медленной (обычно 1 оборот за 4 минуты) и качание по углу места довольно быстрое (1 качание за 2 секунды). Данный метод позволяет довольно точно определять угол места (высоту) целей и нашел широкое применение в наземных радиолокационных высотомерах.