ИДЗ 14.2 Рябушко пример решения
.pdfНаш сайт: Fizmathim.ru
Группа ВКонтакте https://vk.com/fizmathim_resh
Перейти на Готовые решения ИДЗ Рябушко (по вариантам)
Решение задач по высшей математике на заказ
ИДЗ 14.2 – Вариант 0
1. Показать, что данное выражение является полным дифференциалом функции u(x, y). Найти функцию u(x, y)
1.0. (4x3y3 – y2)dx + (3x4y2 – 2xy)dy
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
P |
|
Q |
|
|
|
|
|
|
|
|||
Проверим, выполняется ли условие полного дифференциала |
|
|
|
для функции u(x, y). Имеем: |
|||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
y |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x |
|
|
|
|
|
|
|
||
P x, y 4x3 y3 |
|
y2 ; Q x, y 3x 4 y2 2xy |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||
тогда |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
P |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
4x3 y3 |
|
y2 4x3 y3 y y2 y 4x3 |
3y3 1 |
|
2y2 1 |
12x3 y2 |
2y |
|
|
|
|
|
|
|
||||||||||||||||||||||||||||||
|
y |
|
y |
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
|
Q |
|
|
|
|
|
|
|
|
|
4 |
|
2 |
|
|
|
|
|
|
4 |
|
|
2 |
|
|
|
|
|
|
|
|
4 1 |
|
2 |
|
|
|
3 |
|
2 |
|
|
|
|
|
|
|
|
|||||
|
|
|
|
|
|
3x |
|
y |
|
|
2xy |
3x |
|
y |
|
x |
|
2xy x |
3 4x |
|
|
|
y |
|
2y |
12x |
|
y |
|
2y |
|
|
|
|
|
|
|
||||||||||||||||
|
x |
|
x |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||||||||
Так как выполняется условие |
|
P |
|
Q |
, то данное выражение является полным дифференциалом |
||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
y |
|
x |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
функции u(x, y). |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||
Положив x0 = 1, y0 = 1, по формуле (1) найдем u(x, y) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x |
|
|
|
|
y |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
u x, y P x, y0 dx Q x, y dy C |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x0 |
|
|
|
|
y0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Вычисляем: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||
|
|
|
|
|
|
|
|
|
x |
|
|
|
|
|
|
|
|
|
y |
|
|
|
|
|
|
|
|
|
x |
|
|
|
|
|
|
y |
|
|
|
|
|
|
4x |
4 |
|
|
|
x |
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
|
|
3 |
2 |
|
|
|
|
|
4 2 |
|
|
|
|
|
|
3 |
|
|
|
|
|
|
4 2 |
|
|
|
|
|
|
|||||||||
u x, y 4x |
|
1 |
1 |
dx 3x |
y |
2xy dy 4x |
|
1 dx 3x y |
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
2xy dy |
4 |
|
x |
|
|
||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
1 |
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
y |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||
|
|
3x |
4 |
y |
3 |
|
2xy |
|
2 |
|
|
|
x 4 x |
x |
x 4 y3 |
xy 2 |
y |
|
4 x 14 |
1 x |
4 y3 xy 2 x 4 |
|
|
x 12 |
|||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x |
13 |
||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||||||||||||
|
|
|
|
3 |
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
x 4 x x 4 y3 xy 2 x 4 x x 4 y3 xy 2 C |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||||||||
Результат верен, если |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||
|
u x, y |
|
P x, y , |
|
u x, y Q x, y |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||
|
x |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
y |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
Сделаем проверку: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x |
4 y3 xy 2 |
|
C |
x 4 y3 x |
|
xy 2 |
x |
4x |
4 1y3 y |
2 4x3 y3 y2 |
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||
|
x |
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x |
4 y3 |
xy 2 |
|
C |
x 4 y3 y |
|
xy 2 |
y |
3x |
4 y3 1 x |
2y2 1 3x 4 y2 2xy |
|
|
|
|
|
|
|
||||||||||||||||||||||||||||||||
|
y |
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
Ответ: u x, y x 4 y3 |
xy 2 C |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Наш сайт: Fizmathim.ru
Группа ВКонтакте https://vk.com/fizmathim_resh
Перейти на Готовые решения ИДЗ Рябушко (по вариантам)
Решение задач по высшей математике на заказ
2. Решить следующие задачи
2.0. Вычислить работу силы F = (x2 + y2 + 1)i + 2xyj вдоль дуги параболы y = x3, заключенной между точками A(0, 0) и B(1, 1).
Решение:
Пусть F P x, y i Q x, y j есть переменная сила,
совершающая работу А вдоль пути L, функции P(x, y) и Q(x, y) непрерывны на кривой L, тогда работа силы равна
A P x, y dx Q x, y dy
L
y = x3 dy = 3x2dx
Переменная x в данном направлении изменяется от x1 = 0 до x2 = 1
Пределы интегрирования 0 ≤ x ≤ 1
Тогда работа силы А равна:
A x |
2 |
y |
2 |
|
|
|
|
|
|
|
|
|
1 |
|
2 |
x |
3 |
2 |
|
|
|
|
|
x |
3 |
3x |
2 |
dx |
|
1 |
|
2 |
x |
6 |
1 dx |
6x |
6 |
dx |
|
|||||||||||||||||||
|
|
1 dx 2xydy x |
|
|
|
|
1 dx 2x |
|
|
x |
|
|
|
|
||||||||||||||||||||||||||||||||||||||||||||
|
L |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
|
7 |
|
|
|
|
1 |
|
|
|
3 |
|
|
|
|
|
|
|
|
1 |
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x |
|
|
7x |
|
|
|
|
|
|
|
x |
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
||||||
|
|
2 |
|
|
|
6 |
|
|
|
|
|
|
6 |
|
|
|
2 |
|
|
|
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
|
|
|
|
7 |
|
|||||||||||||
x |
|
x |
|
1 6x |
|
dx x |
|
|
7x |
|
|
1 dx |
|
|
|
|
|
|
x |
|
|
|
|
|
|
x |
|
x |
|
|
|
|
|
1 |
|
1 |
|
|||||||||||||||||||||
|
|
|
|
|
|
3 |
7 |
|
|
|
3 |
|
|
|
|
3 |
|
|||||||||||||||||||||||||||||||||||||||||
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||
|
03 |
|
|
|
|
|
|
|
|
|
1 |
|
|
|
1 |
|
|
|
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
07 |
0 |
|
|
|
|
1 1 |
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||
|
3 |
|
|
|
|
|
|
|
|
|
3 |
|
|
|
3 |
|
|
|
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|