
- •1. Предмет курса «Гидравлика и гидропривод». Основные этапы развития гидравлики как инженерной науки.
- •2. Физическое понятие жидкости как агрегатного состояния вещества.
- •3. Реальная и идеальная жидкость. Понятие вязкости.
- •4.1 Вязкость, как свойство жидкости.
- •4.2 Вязкость, как свойство жидкости.
- •5. Основные физические свойства реальных жидкостей.
- •6. Поверхностное натяжение. Капиллярный эффект.
- •7. Классификация сил, действующих на жидкость.
- •8.1 Свойства гидростатического давления.
- •8.2 Свойства гидростатического давления.
- •9. Уравнение равновесия покоящейся жидкости.
- •10. Основное уравнение гидростатики.
- •11. Понятие абсолютного и избыточного давления. Пьезометрическая высота. Вакуум.
- •12.1 Приборы для измерения давления.
- •12.2 Приборы для измерения давления.
- •13. Сообщающиеся сосуды. Закон Паскаля.
- •14.1 Относительный покой жидкости.
- •14.2 Относительный покой жидкости.
- •15. Поверхности равного давления.
- •16. Сила гидростатического давления, действующая на плоскую фигуру.
- •17. Определение положения центра давления на плоскую фигуру. Понятие эксцентриситета давления.
- •18. Сила гидростатического давления.
- •19. Построение эпюр гидростатического давления.
- •20. Закон Архимеда, плавание тел.
- •21. Линия тока, элементарная струйка.
- •22. Классификация видов движения жидкости.
- •23. Понятие расхода жидкости, средней скорости, живого сечения, гидравлического радиуса, смоченного периметра.
- •24. Дифференциальное уравнение неразрывности потока.
- •25. Дифференциальное уравнение движения идеальной жидкости.
- •26. Вывод уравнения Бернулли для идеальной жидкости.
- •27. Геометрическая и энергетическая интерпретация уравнения Бернулли.
- •28. Уравнение Бернулли для элементарной струйки реальной жидкости.
- •29. Уравнение Бернулли для потока реальной жидкости.
- •30.1 Пример использования уравнения Бернулли в технике.
- •30.2 Пример использования уравнения Бернулли в технике.
- •31. Понятие ламинарного и турбулентного режимов движения реальных жидкостей.
- •32. Критическое значение критерия Рейнольдса и его вывод.
- •33. Ламинарный режим движения. Распределение скорости жидкости по сечению потока.
- •34. Определение расхода жидкости и средней скорости ламинарного потока.
- •35. Понятие пульсационной, мгновенной, осредненной и средней скоростей течения.
- •36.1 Закон внутреннего трения Ньютона. Гипотеза турбулентности Прандтля.
- •36.2 Закон внутреннего трения Ньютона. Гипотеза турбулентности Прандтля.
- •37.1 Дифференциальное уравнение движения реальной жидкости Навье-Стокса.
- •39. Природа потерь напора, их связь с режимом движения жидкости.
- •40. Уравнение Дарси-Вейсбаха для расчета потерь напора по длине трубопровода.
- •41.1 Понятие гидравлически гладких и шероховатых труб.
- •41.2 Понятие гидравлически гладких и шероховатых труб.
- •42.1 Потери напора при турбулентном режиме движения.
- •42.2 Потери напора при турбулентном режиме движения.
- •43. Графики Никурадзе.
- •44.1 Условие возникновения местных потерь напора.
- •44.2 Условие возникновения местных потерь напора.
- •45. Резкое расширение трубопровода. Формула Борда.
- •46. Случаи местных сопротивлений, наиболее часто встречающиеся в инженерной практике.
- •47.1 Истечение жидкости через отверстие. Типы сжатия струи.
- •47.2 Истечение жидкости через отверстие. Типы сжатия струи.
- •48. Коэффициенты истечения и
- •49. Определение коэффициентов ипри истечении жидкости через малое и большое отверстие в тонкой стенке.
- •50. Определение коэффициентов ипри истечении жидкости через затопленное малое отверстие.
- •51. Истечение через насадки. Типы и применение насадков.
- •52.1 Истечение жидкости через внешний цилиндрический насадок.
- •52.2 Истечение жидкости через внешний цилиндрический насадок.
- •53. Истечение жидкости через отверстие при переменном напоре. Время опорожнения сосуда.
- •54. Классификация трубопроводов.
- •55.1 Гидравлический расчет простых трубопроводов.
- •55.2 Гидравлический расчет простых трубопроводов.
- •56 Характеристика трубопроводов. Кривые потребного напора.
- •57.1 Последовательное и параллельное соединение простых трубопроводов.
- •57.2 Последовательное и параллельное соединение простых трубопроводов.
- •58. Расчет разветвленного трубопровода.
- •59. Классификация насосов.
- •60. Принцип действия динамических насосов.
- •61. Основные характеристики насосов.
- •62.1 Устройство и принцип действия центробежного насоса.
- •62.2 Устройство и принцип действия центробежного насоса.
- •63. Движение жидкости в рабочем колесе центробежного насоса.
- •64. Основное уравнение центробежного насоса.
- •65.1 Характеристики центробежного насоса.
- •65.2 Характеристики центробежного насоса.
- •66. Законы пропорциональности для центробежных насосов.
- •67.1 Совместная работа насоса и трубопровода.
- •67.2 Совместная работа насоса и трубопровода.
- •68. Определение рабочей точки системы насос-трубопровод.
- •69.1 Регулирование подачи центробежных насосов.
- •69.2 Регулирование подачи центробежных насосов.
- •70.1 Последовательное и параллельное соединение насосов.
- •70.2 Последовательное и параллельное соединение насосов.
- •71. Общие сведения об объемных насосах.
- •72. Принцип действия объемных насосов.
- •73.1 Рабочие характеристики объемных насосов.
- •73.2 Рабочие характеристики объемных насосов.
- •74. Устройство и принцип действия поршневых насосов.
- •75. Роторные насосы.
- •76.1 Объемный гидропривод. Основные понятия и определения.
- •76.2 Объемный гидропривод. Основные понятия и определения.
- •77.1 Гидролинии. Гидроемкости. Рабочие жидкости. Принципиальные схемы.
- •77.2 Гидролинии. Гидроемкости. Рабочие жидкости. Принципиальные схемы.
73.2 Рабочие характеристики объемных насосов.
сообщаемая
жидкости в рабочей камере и соответствующая
гидравлической мощности в лопастных
насосах. Умножим и разделим уравнение
(1) на
и произведем перегруппировку множителей.
Получим
т. е. КПД насоса (общий) равен произведению
трёх частных КПД – гидравлического,
объёмного и механического.
74. Устройство и принцип действия поршневых насосов.
В
возвратно-поступательных насосах
силовое взаимодействие рабочего органа
с жидкостью происходит в неподвижных
рабочих камерах, которые попеременно
сообщаются с полостями всасывания и
нагнетания за счет впускного и выпускного
клапанов. В качестве рабочего органа
используется поршень, плунжер или гибкая
диафрагма. В связи с этим они подразделяются
на поршневые,
плунжерные и диафрагменные.
Привод прямодействующего насоса
осуществляется за счет возвратно-поступательного
воздействия непосредственно на
вытеснитель. Рассмотрим устройство и
принцип работы поршневого насоса с
вальным приводом. На рис. приведена
конструктивная схема поршневого насоса
с кривошипно-шатунным механизмом.
Приводной вал 7 через кривошип 6 радиусом
и
шатун 5 приводит в движение поршень 3
площадью
,
который движется возвратно-поступательно
в корпусе (цилиндре) 4. Насос также имеет
два подпружиненных клапана: впускной
1 и выпускной 2. Рабочей камерой насоса
является пространство слева от поршня,
ограниченное корпусом 4, поршнем 3, а
также клапанами 1 и 2. При движении поршня
3 вправо жидкость через впускной клапан
1 заполняет рабочую камеру, т.е.
обеспечивается всасывание. При движении
поршня 3 влево жидкость нагнетается в
напорный трубопровод через клапан 2.
Рассматриваемый насос имеет одну рабочую
камеру (
),
и за один оборот вала поршень 3 совершает
один рабочий ход, т.е. это насос однократного
действия (
).
По рис. легко заметить, что рабочий ход
поршня
3 равен двум радиусам кривошипа 6. Тогда
в соответствии с (6.1) его рабочий объем
может быть вычислен по формуле:
.
Насосы с поршнем в качестве вытеснителя
являются наиболее распространенными
из возвратно-поступательных насосов.
Они могут создавать значительные
давления (до 30…40 МПа). Однако выпускаются
также насосы, рассчитанные на значительно
меньшие давления (до 1…5 МПа). Скоростные
параметры этих насосов (количество
рабочих циклов в единицу времени) во
многом определяются конструкцией
клапанов, так как они являются наиболее
инерционными элементами. Насосы с
подпружиненными клапанами допускают
до 100…300 рабочих циклов в минуту. Насосы
с клапанами специальной конструкции
позволяют увеличивать этот параметр
до 300…500 циклов в минуту. В поршневых
насосах существуют все три вида потерь,
т.е. объемные, гидравлические и механические
потери. Полный КПДη
для
большинства поршневых насосов составляет
0,85…0,92.
75. Роторные насосы.
К насосам, применяемым в гидроприводах и других гидросистемах, предъявляют высокие требования, основными из которых являются: малая удельная масса и объем, приходящиеся на единицу мощности, высокий КПД, возможность регулирования и реверса подачи, а также высокая быстроходность и большая надежность. Этим требованиям наиболее полно удовлетворяют роторные насосы. К роторным относятся объемные насосы с вращательным или вращательно-поступательным движением рабочих органов — вытеснителей. Жидкость в этих насосах вытесняется в результате вращательного (в шестеренных и винтовых насосах) иди вращательного и одновременно возвратно-поступательного движения вытеснителей относительно ротора (в роторно-поршневых и пластинчатых насосах). Особенностью рабочего процесса таких насосов является и то, что при вращении ротора рабочие камеры переносятся из полости всасывания в полость нагнетания и обратно. Перенос рабочих камер с жидкостью делает излишними всасывающие и нагнетательные клапаны. Отсутствие всасывающих и нагнетательных клапанов в роторных насосах является основной конструктивной особенностью, которая отличает их от поршневых насосов. Роторный насос обычно состоит из трех основных частей: статора (неподвижного корпуса), ротора, жестко связанного с валом насоса и вытеснителя (одного или нескольких). Рабочий процесс роторного насоса складывается из трех этапов: заполнение рабочих камер жидкостью; замыкание (изоляции) рабочих камер и их перенос; вытеснение жидкости из рабочих камер. Основными свойствами роторных насосов, вытекающими из специфики их рабочего процесса и отличающими их от поршневых насосов, являются следующие:
1. Обратимость, т. е. способность роторных насосов работать в качестве гидродвигателей (гидромоторов). Это означает, что жидкость, подводимая к насосу под давлением, заставляет вращаться ротор и вал. Поршневые насосы этой способностью не обладают.
2. быстроходность. Максимально допустимые
значения частоты вращения для роторных
насосов
об/мин, причем нижний предел соответствует
большим насосам, а верхний — малым. Для
поршневых насосов эти значения в
несколько раз меньше.
3. Способность работать только на чистых (отфильтрованных и не содержащих абразивных и металлических частиц), неагрессивных и смазывающих жидкостях. Эти требования к жидкости обусловлены малыми зазорами в роторном насосе и трением между обработанными по высшим классам точности и чистоты поверхностями статора, ротора и вытеснителей.
Если первые два свойства роторных насосов являются их преимуществами, то третье свойство ограничивает применение этих насосов. Работа насосов на воде исключается, так как вода вызывает коррозию и ведет к быстрому изнашиванию рабочих органов.