
- •1. Предмет курса «Гидравлика и гидропривод». Основные этапы развития гидравлики как инженерной науки.
- •2. Физическое понятие жидкости как агрегатного состояния вещества.
- •3. Реальная и идеальная жидкость. Понятие вязкости.
- •4.1 Вязкость, как свойство жидкости.
- •4.2 Вязкость, как свойство жидкости.
- •5. Основные физические свойства реальных жидкостей.
- •6. Поверхностное натяжение. Капиллярный эффект.
- •7. Классификация сил, действующих на жидкость.
- •8.1 Свойства гидростатического давления.
- •8.2 Свойства гидростатического давления.
- •9. Уравнение равновесия покоящейся жидкости.
- •10. Основное уравнение гидростатики.
- •11. Понятие абсолютного и избыточного давления. Пьезометрическая высота. Вакуум.
- •12.1 Приборы для измерения давления.
- •12.2 Приборы для измерения давления.
- •13. Сообщающиеся сосуды. Закон Паскаля.
- •14.1 Относительный покой жидкости.
- •14.2 Относительный покой жидкости.
- •15. Поверхности равного давления.
- •16. Сила гидростатического давления, действующая на плоскую фигуру.
- •17. Определение положения центра давления на плоскую фигуру. Понятие эксцентриситета давления.
- •18. Сила гидростатического давления.
- •19. Построение эпюр гидростатического давления.
- •20. Закон Архимеда, плавание тел.
- •21. Линия тока, элементарная струйка.
- •22. Классификация видов движения жидкости.
- •23. Понятие расхода жидкости, средней скорости, живого сечения, гидравлического радиуса, смоченного периметра.
- •24. Дифференциальное уравнение неразрывности потока.
- •25. Дифференциальное уравнение движения идеальной жидкости.
- •26. Вывод уравнения Бернулли для идеальной жидкости.
- •27. Геометрическая и энергетическая интерпретация уравнения Бернулли.
- •28. Уравнение Бернулли для элементарной струйки реальной жидкости.
- •29. Уравнение Бернулли для потока реальной жидкости.
- •30.1 Пример использования уравнения Бернулли в технике.
- •30.2 Пример использования уравнения Бернулли в технике.
- •31. Понятие ламинарного и турбулентного режимов движения реальных жидкостей.
- •32. Критическое значение критерия Рейнольдса и его вывод.
- •33. Ламинарный режим движения. Распределение скорости жидкости по сечению потока.
- •34. Определение расхода жидкости и средней скорости ламинарного потока.
- •35. Понятие пульсационной, мгновенной, осредненной и средней скоростей течения.
- •36.1 Закон внутреннего трения Ньютона. Гипотеза турбулентности Прандтля.
- •36.2 Закон внутреннего трения Ньютона. Гипотеза турбулентности Прандтля.
- •37.1 Дифференциальное уравнение движения реальной жидкости Навье-Стокса.
- •39. Природа потерь напора, их связь с режимом движения жидкости.
- •40. Уравнение Дарси-Вейсбаха для расчета потерь напора по длине трубопровода.
- •41.1 Понятие гидравлически гладких и шероховатых труб.
- •41.2 Понятие гидравлически гладких и шероховатых труб.
- •42.1 Потери напора при турбулентном режиме движения.
- •42.2 Потери напора при турбулентном режиме движения.
- •43. Графики Никурадзе.
- •44.1 Условие возникновения местных потерь напора.
- •44.2 Условие возникновения местных потерь напора.
- •45. Резкое расширение трубопровода. Формула Борда.
- •46. Случаи местных сопротивлений, наиболее часто встречающиеся в инженерной практике.
- •47.1 Истечение жидкости через отверстие. Типы сжатия струи.
- •47.2 Истечение жидкости через отверстие. Типы сжатия струи.
- •48. Коэффициенты истечения и
- •49. Определение коэффициентов ипри истечении жидкости через малое и большое отверстие в тонкой стенке.
- •50. Определение коэффициентов ипри истечении жидкости через затопленное малое отверстие.
- •51. Истечение через насадки. Типы и применение насадков.
- •52.1 Истечение жидкости через внешний цилиндрический насадок.
- •52.2 Истечение жидкости через внешний цилиндрический насадок.
- •53. Истечение жидкости через отверстие при переменном напоре. Время опорожнения сосуда.
- •54. Классификация трубопроводов.
- •55.1 Гидравлический расчет простых трубопроводов.
- •55.2 Гидравлический расчет простых трубопроводов.
- •56 Характеристика трубопроводов. Кривые потребного напора.
- •57.1 Последовательное и параллельное соединение простых трубопроводов.
- •57.2 Последовательное и параллельное соединение простых трубопроводов.
- •58. Расчет разветвленного трубопровода.
- •59. Классификация насосов.
- •60. Принцип действия динамических насосов.
- •61. Основные характеристики насосов.
- •62.1 Устройство и принцип действия центробежного насоса.
- •62.2 Устройство и принцип действия центробежного насоса.
- •63. Движение жидкости в рабочем колесе центробежного насоса.
- •64. Основное уравнение центробежного насоса.
- •65.1 Характеристики центробежного насоса.
- •65.2 Характеристики центробежного насоса.
- •66. Законы пропорциональности для центробежных насосов.
- •67.1 Совместная работа насоса и трубопровода.
- •67.2 Совместная работа насоса и трубопровода.
- •68. Определение рабочей точки системы насос-трубопровод.
- •69.1 Регулирование подачи центробежных насосов.
- •69.2 Регулирование подачи центробежных насосов.
- •70.1 Последовательное и параллельное соединение насосов.
- •70.2 Последовательное и параллельное соединение насосов.
- •71. Общие сведения об объемных насосах.
- •72. Принцип действия объемных насосов.
- •73.1 Рабочие характеристики объемных насосов.
- •73.2 Рабочие характеристики объемных насосов.
- •74. Устройство и принцип действия поршневых насосов.
- •75. Роторные насосы.
- •76.1 Объемный гидропривод. Основные понятия и определения.
- •76.2 Объемный гидропривод. Основные понятия и определения.
- •77.1 Гидролинии. Гидроемкости. Рабочие жидкости. Принципиальные схемы.
- •77.2 Гидролинии. Гидроемкости. Рабочие жидкости. Принципиальные схемы.
36.2 Закон внутреннего трения Ньютона. Гипотеза турбулентности Прандтля.
трактовать
как динамический коэффициент турбулентной
вязкости. Тогда его отношение к плотности
можно
трактовать как кинематический коэффициент
турбулентной вязкости. Прандтль придал
величине
физический смысл, аналогичный длине
свободного пробега молекулы в теории
молекулярного обмена, а расстояние от
слоя, откуда объем вышел, до слоя, где
произошло смешение, назвал путем
смешения, отчего теория называется
теорией пути смешения Прандтля. Согласно
предположению Прандтля, пульсация
скорости
должна быть пропорциональна разности
скоростей между слоями:
.
Проводя осреднение и включая коэффициент
пропорциональности в новую величину
где
Величину
,
только пропорциональную ранее введенной
величине
–
пути смешения, называют также путем
смешения, считая коэффициент
пропорциональности входящим в ее
определение. В настоящее время считается,
что величина
является
масштабом турбулентности. Модель пути
смешения позволяет достаточно точно
рассчитать характеристики турбулентных
течений при использовании эмпирически
подобранных зависимостей для пути
смешения.
37.1 Дифференциальное уравнение движения реальной жидкости Навье-Стокса.
37.2 Дифференциальное уравнение движения реальной жидкости Навье-Стокса.
37.3 Дифференциальное уравнение движения реальной жидкости Навье-Стокса.
37.4 Дифференциальное уравнение движения реальной жидкости Навье-Стокса.
38. Критерии гидромеханического подобия.
Подобие геометрических и физических параметров является необходимым, но недостаточным условием подобия модели и натурного объекта. Необходимо ещё, чтобы в сходственных точках геометрически подобных потоков отношение действующих сил были одинаковыми. Как известно, в потоке вязкой жидкости действуют силы веса (тяжести) и инерции, давления и трения. Соотношения сил давления и инерции, сил тяжести и инерции, сил инерции и трения (вязкости) выражают три безразмерных комплекса величин, являющихся критериями гидродинамического подобия потоков жидкости; они называются соответственно критериями Эйлера (Eu), Фруда (Fr) и Рейнольдса (Re). Равенство этих критериев в сходственных точках подобных потоков (натуры и модели) является необходимым условием их гидродинамического подобия (I теорема подобия).
Согласно II теореме подобия: решение любого дифференциального уравнения, связывающего между собой переменные, влияющие на процесс, может быть представлено в виде функциональной зависимости между критериями подобия, составленными из этих переменных.
Согласно III теореме подобия: явления подобны, если их определяющие критерии равны. Следствием выполнения этого условия будет также равенство критериев Эйлера в сходственных точках подобных потоков.
Основные критерии гидродинамического подобия
Критерий |
Выражение критерия |
Физический смысл критерия |
Критерий Рейнольдса |
Re= |
Определяет режим движения потока. Является мерой отношения силы инерции к силе вязкости. |
Критерий Фруда |
Fr= |
Характеризует действие сил тяжести в подобных потоках. Является мерой отношения силы инерции к силе тяжести. |
Критерий Эйлера |
Eu= |
Характеризует действие сил давления в подобных потоках. Является мерой отношения силы давления к силе инерции. |