
- •Современная клеточная теория включает следующие положения.
- •7)Биосинтез белка. Основные этапы:транскрипция,пронессии( созревание и-рнк)
- •8)Биосинтез белка:трансляция, предрибосомный и рибосомный период.
- •12)Ассимиляция и диссимиляция как основа самообновления биологических систем. Определение, сущность, значение. Основные реакции ассимиляции.
- •13)Цикличность превращения атф в адф и адф в атф.
- •14)Гликолиз. Окисление на уровне субстрата
- •15)Брожение
- •16)Механизмы переноса веществ через мембраны митохондрий
- •Облегчённая диффузия веществ
- •Пассивный антипорт анионов нсо3- и Сl- через мембрану эритроцитов.
- •17)Цикл кребса, его значение
- •18)Понятие об этц и дыхательной цепи митохондрий
- •22)Фотосинтез как процесс планетарного значения
- •23)Энергетическая фаза фотосинтеза
- •Эндогенные механизмы регуляции фотосинтеза.
- •32)Хлоропласты как органеллы трансформации световой энергии в в энергию химических связей
- •34)Биологический смысл мейоза
- •35)Размножение-основное свойство живого. Бесполое размножение, его формы, биологическое значение
- •36)Половое размножение, его способы и биологическое значение.
- •37)Гаметогенез: формирвание женских гамет, его особенности
- •42)Эмбриогенез:гаструляция,нейруляция
- •46)Эмбриональное развитие и апоптоз
- •49)Формы биологических связей в природе.Паразитизм как биологический феномен.
- •50)Малярийные плазмодии,систематическое положение, видовые различия.
- •58)Круглые черви. Общая эколого-морфилогическая характеристика типа. Особеннсоти органиации.Важнейшие представители. Значение для медицины
- •59)Аскарида,систематическое положение,морфология.
- •60)Цикл развития,пути заражения хозяина. Лабораторная диагностика и профилактика аскаридоза
- •61)Острица. Систематическое положение, морфология:цикл развития. Пути заражения хозяев.Лабораторная диагностика,профилактика заболевания.
- •63)Законы жизни: Стабильность и изменчивость как важнейшие свойства генетического материала
- •Цитологические основы законов Менделя базируются на:
- •66)Множественные аллели и полигенное наследование на примере человека. Взаимодействие неаллельных генов: комплементарность.
- •69)Хромосомный механизм наследования пола. Цитогенетические методы определения пола. Наследование, сцепленное с полом.
- •Генетика пола.
- •70) Онтогенетическая изменчивость
- •71)Генные мутации, молекулярные механизмы, определяющие частоту мутаций в природе.
- •72) Геномные мутации
- •73)Хромосомные мутации
- •Мутационная теория
- •74) Наследственные болезни человека, определяемые хромосомной трисомией
- •75)Наследственные заболевания: Синдром Шерешевского-Тернера и Клайнфельтера
- •Клиническая картина
- •Симптомы синдрома Клайнфельтера
- •76)Синдром «кошачьего крика»
- •79)Репарационные системы(понятие,пример)
- •80)Цитологический метод диагностики хромосомных нарушений у человека
- •84)Естественный отбор, его формы и значения для видообразования
- •85)Соотношение онтогенеза и филогенеза
- •86)Понятие о ткани. Типы тканей
- •91)Тератогенез.Тератогенные факторы.
7)Биосинтез белка. Основные этапы:транскрипция,пронессии( созревание и-рнк)
Биосинтез белка – сложный многостадийный процесс синтеза полипептидной цепи из аминокислотных остатков, происходящий на рибосомах клеток живых организмов с участием молекул мРНК и тРНК. Именно туда поступает информационная РНК из ядра клетки.
Биосинтез белка можно разделить на стадии транскрипции, процессинга и трансляции.
Транскрипция (от лат. transcriptio — переписывание) — биосинтез молекул РНК ,осуществляемый на молекулах ДНК по принципу матричного синтеза. При помощи ферментов на соответствующих участках молекулы ДНК(генах) синтезируются все виды РНК. Синтезируется 20 разновидностей тРНК,так как в биосинтезе белка принимают участие 20 аминокислот. Затем иРНК и тРНК выходят в цитоплазму, рРНК встраивается в субъединицы рибосом, которые также выходят в цитоплазму.
Обратная транскрипция — это процесс образования двуцепочечной ДНК на матрице одноцепочечной РНК. Данный процесс называется обратной транскрипцией, так передача генетической информации при этом происходит в «обратном» направлении, относительно транскрипции.
Процессинг (англ. processing — обработка, переработка)— процесс формирования зрелых молекул РНК из их предшественников (пре-РНК). Иными словами, это совокупность реакций, ведущих к превращению первичных продуктов транскрипции (т. е. пре-РНК различных видов) в функционирующие молекулы. Процессинг т- и рРНК в основном сводится к удалению лишних фрагментов с концов молекул. Что касается иРНК, то у эукариот ее процессинг осуществляется многоступенчато. Основными его событиями являются следующие:
— модификация концов молекулы и РНК, в ходе которой к концам молекулы присоединяются специфические короткие, последовательности нуклеотидов, обозначающие место начала и место конца трансляции;
- сплайсинг - удаление неинформативных последовательностей РНК, соответствующих интронам ДНК.
У прокариот иРНК не подвергаются процессингу — они способны работать сразу после синтеза.
У всех организмов процессинг РНК происходит в ядре. Для каждого типа молекул он осуществляется специальным ферментом (или группой ферментов)
(Процессингу также могут подвергаться и продукты трансляции, т . е. полипептиды, непосредственно считанные с иРНК. Таким изменениям подвергаются молекулы — предшественники многих белков - пищеварительных ферментов, коллагена, некоторых гормонов, иммуноглобулинов и др., после чего они начинают реально функционировать в организме).
8)Биосинтез белка:трансляция, предрибосомный и рибосомный период.
Биосинтез белка – сложный многостадийный процесс синтеза полипептидной цепи из аминокислотных остатков, происходящий на рибосомах клеток живых организмов с участием молекул мРНК и тРНК. Именно туда поступает информационная РНК из ядра клетки.
Биосинтез белка можно разделить на стадии транскрипции, процессинга и трансляции.
Транскрипция – это процесс снятия информации с молекулы ДНК, синтезируемой на ней молекулой и-РНК. Информационная РНК состоит из одной цепи и синтезируется на ДНК в соответствии с правилом комплементарности. Как и в любой другой биохимической реакции в этом синтезе участвует фермент. Он активирует начало и конец синтеза молекулы и-РНК. Готовая молекула и-РНК выходит в цитоплазму на рибосомы, где происходит синтез полипептидных цепей. Процесс перевода информации, содержащейся в последовательности нуклеотидов и-РНК, в последовательность аминокислот в полипептиде называется трансляцией.
Аминокислоты доставляются к рибосомам транспортными РНК. Эти РНК имеют форму клеверного листа. На конце молекулы есть площадка для прикрепления аминокислоты, а на вершине – триплет нуклеотидов, комплементарный определенному триплету – кодону на и-РНК. Этот триплет называется антикодоном. Ведь он расшифровывает код и-РНК. В клетке т-РНК всегда столько же, сколько кодонов, шифрующих аминокислоты.
Рибосома движется вдоль и-РНК, смещаясь при подходе новой аминокислоты на три нуклеотида, освобождая их для нового антикодона. Аминокислоты, доставленные на рибосомы, ориентированы по отношению друг к другу так, что карбоксильная группа одной аминокислоты оказывается рядом с аминогруппой другой аминокислоты. В результате между ними образуется пептидная связь. Постепенно формируется молекула полипептида.
Синтез белка продолжается до тех пор, пока на рибосоме не окажется один из трех стоп-кодонов – УАА, УАГ, или УГА.
После этого полипептид покидает рибосому и направляется в цитоплазму. На одной молекуле и-РНК находятся несколько рибосом, образующих полисому. Именно на полисомах и происходит одновременный синтез нескольких одинаковых полипептидных цепей.
Каждый этап биосинтеза катализируется соответствующим ферментом и обеспечивается энергией АТФ.
Биосинтез происходит в клетках с огромной скоростью. В организме высших животных в одну минуту образуется до 60 тыс. пептидных связей
9)т-РНК как адаптор и акецептор
Молекулы т-РНК являются молекулами адапторами, т.е. посредниками, при помощи которых АК переносятся и включаются в определенном порядке в растущую полипептидную цепь. Транспортная РНК - молекула-адаптор, или дешифровщик. По¬скольку между нуклеотидами и аминокислотами невозможны специфиче¬ские взаимодействия (по типу комплементарных нуклеотидных пар), то появилось предположение о существовании молекул-адапторов, которые могут взаимодействовать как с определенным кодоном, так и с определен¬ной аминокислотой. Такими молекулами оказались транспортные РНК. 3'-Конец всех их молекул заканчивается одинаковой последовательностью ЦЦА, к которой могут присоединяться аминокислоты. Каждая т-РНК специфично связыва¬ется только с одной определенной аминокислотой, а общее количество ви¬дов т-РНК - 61, т.е. столько же, сколько имеется смысловых кодонов. В то же время одна аминокислота может взаимодействовать с двумя-шестью разными т-РНК, что объясняет вырожденность кода.
Каждая тРНК присоединяет определённую аминокислоту и транспортирует её к месту сборки полипептида в рибосоме. В молекуле тРНК есть два активных участка: триплет-антикодон на одном конце и акцепторный конец на другом. Антикодон считывает информацию с иРНК, акцепторный конец является посадочной площадкой для аминокислоты. Синтез полипептидной цепи белковой молекулы начинается с активации аминокислот, которую осуществляют специальные ферменты. Каждой аминокислоте соответствует как минимум один фермент. Фермент обеспечивает присоединение аминокислоты к акцепторному участку тРНК с затратой энергии АТФ.
10)Регуляция биосинтеза ,ее уровни. Антибиотики: их роль в регуляции синтеза белка патогенных микроорганизмов
Белки(полипептиды)
1(протеины)
Биополимеры,мономеры являются аминокислоты +(-) 200 аминокислот 20 входят в состав белков-протеинногенные
Н
(амино)Н2N-С-СООН(карбоксильная)
R
Протеиногенные аминокислоты:
1-аланин-а/а
2-валин-val
3-глицин-gly
4-лицин-lys
5-лейцин-leu
6-пролин-pro
7-аргинин-arg
8-треонин-thr
9-триптофан-trp
10-серин-ser
11-метионин-met
12-цистеин-cys
13-фенилаланин-phe
14-аспарагин-asn
15-аспартат-asp
16-глутамин-gln
17-глутамат-glu
18-гистидин-hiss
19-гуолейцин-ile
20-гидроксипролин-hyp
Уровни организации белков:
1)первичная(линейная цепочка,пептидная связь)
2)вторичная(конфериация-пространственная укладка белков)
3)третичная(трехмерная укладка)
4)четвертичная
Два типа вторичной связи:
1)a(альфа)-спираль
2)B(бета)-складчатость
11)Энергодонорные системы клетки
Митохо́ндрия— двумембранный сферический или эллипсоидный органоид диаметром обычно около 1 микрон. Характерна для большинства эукариотических клеток, как автотрофов (фотосинтезирующие растения), так и гетеротрофов (грибы, животные). Энергетическая станция клетки; основная функция — окисление органических соединений и использование освобождающейся при их распаде энергии для генерации электрического потенциала, синтеза АТФ и термогенеза. Эти три процесса осуществляются за счёт движения электронов по электронно-транспортной цепи белков внутренней мембраны. Количество митохондрий в клетках различных организмов существенно отличается[1]: так, одноклеточные зелёные водоросли (эвглена, хлорелла, политомелла) и трипаносомы имеют лишь одну гигантскую митохондрию, тогда как ооцит и амёба Chaos chaos содержат 300 000 и 500 000 митохондрий соответственно; у кишечных анаэробных энтамёб и некоторых других паразитических простейших митохондрии отсутствуют. В специализированных клетках органов животных содержатся сотни и даже тысячи митохондрий (мозг, сердце, мышцы).