
- •Российская федерация
- •Автономная некоммерческая организация
- •«Учебно-методический центр»
- •«Статус»
- •Учебно – методическое пособие
- •Транспорт нефти и нефтепродуктов
- •1.1. Общие сведения о транспорте и нефтепродуктах
- •1.2. Железнодорожный транспорт. Общая характеристика
- •1.3. Водный транспорт
- •1.4. Автомобильный транспорт
- •1.5. Трубопроводный транспорт
- •2. Гидравлические расчеты магистральных нефтепроводов. Основные факторы, влияющие на перекачку жидкостей
- •2.1. Трасса трубопровода и ее профиль
- •2.2. Гидравлический уклон
- •2.3. Гидравлический расчет трубопроводов
- •2.4. Характеристика трубопровода
- •2.5. Совмещенная характеристика насосных станций и трубопровода
- •2.6. Расчет сложных трубопроводов
- •3. Сортамент труб и элементы трубопроводных коммуникаций
- •3.1. Рукава
- •3.2. Соединения труб
- •3.3. Прокладки для фланцевых соединений
- •4. Арматура трубопроводов
- •4.1. Регулирующая арматура
- •4.2. Предохранительная арматура
- •4.3. Приводы для управления трубопроводной арматурой
- •5. Прокладка трубопроводов
- •5.1. Компенсация тепловых удлинений трубопроводов
- •5.2. Компенсаторы
- •6. Опоры трубопроводов
- •6.1. Расчет трубопроводов на прочность
- •6.2. Защита трубопроводов от коррозии
- •7. Резервуары для хранения нефти и нефтепродуктов
- •Стальные резервуары
- •Неметаллические резервуары
- •8. Оборудование резервуаров
- •Перепускным устройством и механизмом управления хлопушкой
- •Гидравлический клапан типа
- •9. Расчет вертикальных цилиндрических резервуаров
- •9.1. Резервуары с постоянной толщиной стенки
- •9.2. Резервуары с переменной толщиной стенки
- •10. Подогрев нефти и нефтепродуктов
- •10.1. Назначение, способы подогрева и теплоносители
- •10.2. Конструкции и расчет подогревателей
- •11. Потери нефти и нефтепродуктов. Классификация потерь
- •12. Основные способы перекачки высоковязких и высокозастывающих нефтей и нефтепродуктов
- •12.1. Перекачка с разбавителями
- •12.2. Гидротранспорт вязкой нефти
- •12.3. Перекачка термообработанной нефти
- •12.4. Перекачка нефти с присадками
- •12.5. Перекачка предварительно подогретой нефти
- •13. Транспорт газа
- •13.1. Классификация и состав природных и искусственных газов
- •Физико-химические свойства углеводородных газов
- •13.2. Основные законы газового состояния
- •13.3. Общие сведения о транспорте газа
- •13.4. Компрессорные станции газопроводов
- •13.5. Удаление примесей из газа
- •Очистка газа от газообразных примесей
- •Очистка газа от сероводорода и углекислоты
- •13.6. Одоризация газа
- •Промысловые резервуары
- •Оборудование резервуаров
- •Борьба с потерями нефти
- •Потери при закачке промысловых сточных вод
- •Приборы для измерения давления, температуры, расхода, уровня
- •Жидкостные манометры
- •Деформационные манометры
- •Измерение температуры
- •Измерение уровня жидкости
- •Измерение расхода и количества жидкостей
- •Автоматические средства измерения содержания в нефти воды, солей, плотности
- •Учет нефти
- •Учет нефти в резервуарах
- •Учет нефти по счетчикам
- •Обслуживание резервуарных парков
- •Охрана труда и противопожарные мероприятия. Охрана окружающей среды Инструктаж и обучение безопасным методам труда
- •Токсичность, вредность нефти и применяющихся в добыче нефти веществ
- •Производственное освещение
- •Классификация насосов
- •Свойства и классификация перекачиваемых жидкостей
- •Динамические насосы основные зависимости
- •Характеристики насосов и способы их регулирования
- •Конструктивное исполнение насосов
- •Нефтяные насосы
- •Пуск и остановка насосного агрегата
- •Характерные неисправности в работе насосных агрегатов
- •14. Вопросы для самопроверки
- •Литература
Измерение температуры
Температура является одним из важнейших параметре определяющих протекание многих технологических процессе Температурными пределами процесса определяется качество получаемых продуктов, давление их паров, плотность и вяз кость жидкостей и паров и т. д.
В настоящее время для нахождения температуры используются следующие основные физические явления, происходящие веществах при изменении температуры:
1) изменение линейных размеров и объема жидких и твердых тел;
2) изменение давления жидкостей и газов, заключенных постоянный объем;
возникновение и изменение термоэлектродвижущих сил в термоэлементах;
изменение активного электрического сопротивления про водников или полупроводников;
5) изменение лучеиспускательной способности нагретых тел. В зависимости от названных явлений классифицируются при-
боры для измерения температуры, называемые термометрами.
Термометрами расширения называются такие приборы, в которых используется наблюдаемое при изменен температуры изменение объема или линейных размеров к В зависимости от веществ, используемых в приборах, термометры расширения подразделяются на жидкостные и деформационные. Действие жидкостных термометров расширения основано на принципе теплового расширения жидкости, заключенной в стеклянный резервуар малого объема. Действие же механических термометров основано на изменении линейных размеров твердых материалов (металлов и сплавов) при изменении их температуры.
В качестве рабочей жидкости для жидкостных термометров применяют ртуть и органические жидкости. Ртутные жидкостные термометры обычно используют для измерения высоких температур (до 750°С), а термометры с органическими жидкостями— для измерения низких температур (спирты до —100°С, толуол до —90°С).
Жидкостные стеклянные термометры относятся к местным приборам контроля за температурой. Они изготавливаются прямыми и угловыми под углами 90 и 135°. В производственных условиях ртутные термометры обычно устанавливают в металлической защитной арматуре (стальной трубке с окном для наблюдения за показаниями), что предохраняет термометры от механических повреждений.
В технологических процессах с повышенными- температурами широко применяются термоэлектрические термометры, принцип действия которых основан на термоэлектрическом эффекте. Если взять два проводника с разной проводимостью А и В и одни концы их спаять или сварить, а вторые оставить свободными, то при нагревании спая на свободных концах возникнет разность потенциалов ЕАв или термоэлектродвижущая сила (т.э.д.с). Эта разность потенциалов (т.э.д.с.) будет тем выше, чем больше разность температур спая и свободных концов. Образованный таким образом термоэлемент называется термопарой.
Чтобы измерить т.э.д.с. в цепи термопары, необходим измерительный прибор, подсоединенный к ее свободным концам (свободным концам термоэлектродов).
При измерении температуры термопара как чувствительный элемент помещается в измеряемую среду, причем каждому значению температуры среды будет соответствовать определенная т.э.д.с. термопары. Т.э.д.с. термопары зависит от материала термоэлектродов, из которых изготавливаются термопары. Это, главным образом, металлические сплавы с малым коэффициентом температурного сопротивления. В промышленности широко применяются термопары из благородных и неблагородных металлов.
Один термоэлектрод термопары ТПП (платинородий — платина) выполнен из сплава (10% Rh и 90% Rt). второй электрод— из чистой платины. Такая термопара обладает повышенной жаростойкостью и стабильной характеристикой. Она применяется для измерения температур от 200до1300°С при длительном использовании в промышленных условиях и до 1600°С при кратковременных измерениях. Диаметр термоэлектродов 0,5 мм. Термопара. ТХА (хромсль-алюмсль) имеет один термоэлектрод из хромеля (89 % Ni, 9,8 % Сг, 1 % Fe, 0,2 % Мn), а второй из алюмеля (94 % Ni, 2 %А1, 2,5 % Мn, 1 % Si, 0,5 % Fe). Применяется для измерения температуры от —50 до 1000 °С при продолжительных измерениях в промышленных условиях и до 1300 °С при кратковременных измерениях. Диаметр этих термоэлектродов не менее 3,2 мм.
Термопара ТХК (хромель-копель) имеет один электрод из хромеля, а второй из копеля (56% Ni, 44% Сг). Применяется для измерения температуры от —50 до 600 °С при продолжительных и до 800 °С при кратковременных измерениях. Диаметр термоэлектродов ТХК не менее 3,2 мм.
При измерении температуры в нескольких местах одного и того же объекта или в нескольких различных объектах контроля часто один измерительный прибор работает в. комплекте с несколькими термопарами (рис. 79). В этом случае температура изменяется путем поочередного подключения термопар к измерительному прибору.
На принципе использования милливольтметров для измерения температуры разработаны специальные приборы, называемые потенциометрами.