
- •Российская федерация
- •Автономная некоммерческая организация
- •«Учебно-методический центр»
- •«Статус»
- •Учебно – методическое пособие
- •Транспорт нефти и нефтепродуктов
- •1.1. Общие сведения о транспорте и нефтепродуктах
- •1.2. Железнодорожный транспорт. Общая характеристика
- •1.3. Водный транспорт
- •1.4. Автомобильный транспорт
- •1.5. Трубопроводный транспорт
- •2. Гидравлические расчеты магистральных нефтепроводов. Основные факторы, влияющие на перекачку жидкостей
- •2.1. Трасса трубопровода и ее профиль
- •2.2. Гидравлический уклон
- •2.3. Гидравлический расчет трубопроводов
- •2.4. Характеристика трубопровода
- •2.5. Совмещенная характеристика насосных станций и трубопровода
- •2.6. Расчет сложных трубопроводов
- •3. Сортамент труб и элементы трубопроводных коммуникаций
- •3.1. Рукава
- •3.2. Соединения труб
- •3.3. Прокладки для фланцевых соединений
- •4. Арматура трубопроводов
- •4.1. Регулирующая арматура
- •4.2. Предохранительная арматура
- •4.3. Приводы для управления трубопроводной арматурой
- •5. Прокладка трубопроводов
- •5.1. Компенсация тепловых удлинений трубопроводов
- •5.2. Компенсаторы
- •6. Опоры трубопроводов
- •6.1. Расчет трубопроводов на прочность
- •6.2. Защита трубопроводов от коррозии
- •7. Резервуары для хранения нефти и нефтепродуктов
- •Стальные резервуары
- •Неметаллические резервуары
- •8. Оборудование резервуаров
- •Перепускным устройством и механизмом управления хлопушкой
- •Гидравлический клапан типа
- •9. Расчет вертикальных цилиндрических резервуаров
- •9.1. Резервуары с постоянной толщиной стенки
- •9.2. Резервуары с переменной толщиной стенки
- •10. Подогрев нефти и нефтепродуктов
- •10.1. Назначение, способы подогрева и теплоносители
- •10.2. Конструкции и расчет подогревателей
- •11. Потери нефти и нефтепродуктов. Классификация потерь
- •12. Основные способы перекачки высоковязких и высокозастывающих нефтей и нефтепродуктов
- •12.1. Перекачка с разбавителями
- •12.2. Гидротранспорт вязкой нефти
- •12.3. Перекачка термообработанной нефти
- •12.4. Перекачка нефти с присадками
- •12.5. Перекачка предварительно подогретой нефти
- •13. Транспорт газа
- •13.1. Классификация и состав природных и искусственных газов
- •Физико-химические свойства углеводородных газов
- •13.2. Основные законы газового состояния
- •13.3. Общие сведения о транспорте газа
- •13.4. Компрессорные станции газопроводов
- •13.5. Удаление примесей из газа
- •Очистка газа от газообразных примесей
- •Очистка газа от сероводорода и углекислоты
- •13.6. Одоризация газа
- •Промысловые резервуары
- •Оборудование резервуаров
- •Борьба с потерями нефти
- •Потери при закачке промысловых сточных вод
- •Приборы для измерения давления, температуры, расхода, уровня
- •Жидкостные манометры
- •Деформационные манометры
- •Измерение температуры
- •Измерение уровня жидкости
- •Измерение расхода и количества жидкостей
- •Автоматические средства измерения содержания в нефти воды, солей, плотности
- •Учет нефти
- •Учет нефти в резервуарах
- •Учет нефти по счетчикам
- •Обслуживание резервуарных парков
- •Охрана труда и противопожарные мероприятия. Охрана окружающей среды Инструктаж и обучение безопасным методам труда
- •Токсичность, вредность нефти и применяющихся в добыче нефти веществ
- •Производственное освещение
- •Классификация насосов
- •Свойства и классификация перекачиваемых жидкостей
- •Динамические насосы основные зависимости
- •Характеристики насосов и способы их регулирования
- •Конструктивное исполнение насосов
- •Нефтяные насосы
- •Пуск и остановка насосного агрегата
- •Характерные неисправности в работе насосных агрегатов
- •14. Вопросы для самопроверки
- •Литература
5.1. Компенсация тепловых удлинений трубопроводов
В процессе эксплуатации трубопроводы изменяют свою температуру в связи с изменением температуры окружающей среды и перекачиваемых жидкостей. Колебание температуры стенки трубопровода приводит к изменению его длины.
Закон изменения длины трубопровода выражается уравнением
Δ=α ·l(ty-to),
где Δ — удлинение или укорочение трубопровода; а — коэффициент линейного расширения металла труб (для стальных труб α = 0,000012 1/°С); l — длина трубопровода; ty— температура укладки трубопровода; t0- температура окружающей среды.
Если концы трубопровода жестко закреплены, то от температурных воздействий в нем возникают термические напряжения растяжения или сжатия, величина которых определяется по закону Гука
,
где Е - модуль упругости материала трубы (для стали) E = 2,1·106 кг/см2 =2,1·105 МПа).
Эти напряжения вызывают в точках закрепления трубопровода усилия, направленные вдоль оси трубопровода, не зависящие от длины, и равные
N = σ · F,
где σ — напряжение сжатия и растяжения, возникшее в трубе от изменения температуры; F — площадь живого сечения материала трубы.
Величина N может быть очень большой и привести к разрушению трубопровода, арматуры, опор, а также нанести повреждения оборудованию (насосам, фильтрам и т.п.) и резервуарам.
Изменения длины подземных трубопроводов зависят не только от колебаний температуры, но и от силы трения трубы о грунт, которая препятствует изменениям длины.
Если усилия от термических напряжений не зависят от длины трубопровода, то сила трения трубы о грунт прямо пропорциональна длине трубопровода. Существует такая длина, на которой силы трения могут уравновеситься с термической силой, и трубопровод не будет иметь изменения длины. На участках меньшей длины трубопровод будет передвигаться в грунте.
Предельная длина такого участка 1max, на котором возможно перемещение трубопровода в грунте, определяется по уравнению
где δ — толщина стенки трубы, см; k — давление грунта на поверхность трубы, кг/см2; μ — коэффициент трения трубы о грунт.
5.2. Компенсаторы
Разгрузка трубопроводов от термических напряжений осуществляется установкой компенсаторов. Компенсаторы — устройства, позволяющие трубопроводам свободно удлиняться или сокращаться при изменении температуры без повреждения соединений. Применяются линзовые, сальниковые, гнутые компенсаторы.
При выборе трассы трубопроводов необходимо стремиться к тому, чтобы температурные удлинения одних участков могли бы восприниматься деформациями других, т.е. стремиться к самокомпенсации трубопровода, используя для этого все его повороты и изгибы.
Линзовые компенсаторы (рис. 5.5) применяются для компенсации удлинений трубопроводов с рабочим давлением до 0,6 МПа при диаметре от 150 до 1 200 мм.
Рис. 5.5. Компенсаторы линзовые с двумя фланцами
Компенсаторы изготавливают из конических тарелок (штампованных), каждая пара сваренных между собой тарелок образует волну. Количество волн в компенсаторе делают не более 12 во избежание продольного изгиба. Компенсирующая способность линзовых компенсаторов составляет до 350 мм.
Линзовые
компенсаторы характеризуются
герметичностью,малыми
габаритами, простотой изготовления и
эксплуатации, но применение
их ограничено непригодностью
для больших давлений. Сальниковые
компенсаторы
(рис. 5.6) являются осевыми компенсаторами
и применяются для
давлений до 1,6 МПа. Компенсаторы
состоят из чугунного или стального
корпуса и входящего в него
стакана. Уплотнение между стаканом
и корпусом создается сальником.
Компенсирующая способность
сальниковых компенсации ров
составляет от 150 до 500 мм.
Сальниковые компенсатора устанавливаются на трубопроводе с точной укладкой, так как возможные перекосы могут привести к заеданию стакана и разрушения компенсатора. Сальниковые компенсаторы ненадежны в отношение герметичности, требуют постоянного надзора за уплотнением сальников и в связи с этим имеют ограниченное применение. Эти компенсаторы устанавливаются на трубопроводах диаметром от 100 мм и выше для негорючих жидкостей и на паропроводах.
Гнутые компенсаторы имеют П-образную (рис. 5.7), лирообразную, S-образную и другие формы и изготавливаются на месте монтажа из тех труб, из которых собирается трубопровод. Эти компенсаторы пригодны для любых давлений, уравновешены и герметичны. Недостатками их являются значительные габариты.