Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Рожков_Ниссенбаум_ТЧМК_лекции.doc
Скачиваний:
1310
Добавлен:
27.03.2016
Размер:
2.55 Mб
Скачать

§5. Теория квадратичных вычетов

Рассмотрим сравнение xna(mod m) *, (a,m)=1. Если * имеет решение, то а называется вычетом степени n по модулю m. Если n=2, то вычеты называются квадратичными, если n=3 – кубическими, n=4 – биквадратичными. Если * решений не имеет, то а называется невычетом степени n по модулю m.

Далее будем рассматривать случай n=2, т.е. сравнения вида x2a(mod m), (a,m)=1.

5.1. Квадратичные вычеты по простому модулю.

В этом пункте будем рассматривать сравнения вида x2a(mod p), p>2 – простое число.

Теорема 1.

Если а – квадратичный вычет по простому модулю р, то сравнение x2a(modp) имеет ровно 2 решения.

Доказательство:

Если а – квадратичный вычет по модулю p, то найдется хотя бы одно решение исходного сравнения: xx1(mod p).

Но, поскольку (—x1)2=x12, то решением также является x≡—x1(mod p), причем x1x1(mod p), т.к. р – нечетное число.

Более двух решений данное сравнение иметь не может, так как является сравнением второй степени (§4, п.3, Теорема 2).

Теорема (о числе квадратичных вычетов)

Приведенная система вычетов по модулю p состоит из квадратичных вычетов иквадратичных невычетов.

Доказательство:

Среди вычетов приведенной системы по модулю p квадратичными вычетами являются только те, что сравнимы с квадратами чисел

…, –2, –1, 1, 2,…, , т.е. с числами 1, 22, 32,…,

При этом квадраты не сравнимы между собой по модулю p, т.к. иначе из того, что k2 l2 (mod p), 0 < k < l следовало бы, что сравнениюx2l2(mod p) удовлетворяют 4 числа: –l, l, k, k, что противоречит Теореме 1.

Таким образом, квадратичных вычетов в приведенной системе по модулю p ровно штук. Остальные элементы приведенной системы являются квадратичными невычетами. А поскольку всего в приведенной системе по модулюp содержится p1 элементов, то квадратичными невычетами являются также элементов.

Множество квадратных вычетов по модулю p обозначается Q(p), множество квадратичных невычетов – .

5.2. Символ Лежандра. Символ Якоби.

Символом Лежандра называется символ (читается «символ Лежандра а по р»). а называется числителем, рзнаменателем символа Лежандра. Символ Лежандра отвечает на вопрос, является ли число а квадратичным вычетом по модулю р.

Вычислить символ Лежандра можно, пользуясь следующими свойствами.

Свойства символа Лежандра:

  1. Критерий Эйлера:

  2. a≡a1(mod p)

  3. 3акон взаимности: если p, q – нечетные простые числа

Докажем некоторые из этих свойств.

Теорема (Критерий Эйлера)

Если (p, a)=1

Доказательство:

По теореме Ферма, ap--1≡1(mod p). В этом сравнении перенесем единицу в левую часть: ap—1—1≡0(mod p). Поскольку p – простое, а значит нечетное число, значит p—1 – число четное. Тогда можем разложить левую часть сравнения на множители: .

Из множителей в левой части один и только один делится на p, то есть либо

*, либо **

Если а – квадратичный вычет по модулю р, то а при некотором x удовлетворяет сравнению ax2(mod p) , тогда , а учитывая (по теореме Ферма), чтоxp—1≡1(mod p), получаем сравнение (*).

При этом решения сравнения * исчерпываются квадратичными вычетами по модулю р. Следовательно, если а – квадратичный невычет по модулю р, то сравнение * не выполняется, а значит выполняется сравнение **.

Свойство 2:

Доказательство следует из того, что все числа одного класса вычетов по модулю р будут одновременно квадратичными вычетами или квадратичными невычетами.

Свойство 3:

Для любого p выполняется 1≡12(mod p), а значит «1» является квадратичным вычетом для любого модуля p.

Свойство 4:

Доказательство следует из критерия Эйлера при a=—1.

Свойство 5:

По критерию Эйлера, .

Доказательства прочих свойств можно произвести самостоятельно или найти в [5].

Итак, символ Лежандра можно найти, пользуясь либо критерием Эйлера, либо используя свойства 2-8:

Пример:

a)

10 – квадратичный вычет по модулю 13.

б)

.

1350 не является квадратичным вычетом по модулю 1381.

Пусть n – составное число, каноническое разложение которого есть . Положим (a,n)=1. Тогда символ Якоби определяется равенством: