
- •9)Вычислите .
- •10) Найдите размерность и какой-нибудь базис пространства решений уравнения
- •12) Определите ранг матрицы
- •13) Найдите матрицу X из уравнения
- •14) Является ли система векторов a1=(1,1,1,1), a2=(1,2,3,4), a3=(5,6,7,8), a4=(4,3,2,1), a5=(1,1,-1,-1) линейно зависимой?
- •15) Запишите квадратичную форму, имеющую данную матрицу
- •16) С помощью правила Крамера решите систему уравнений
- •17) Найдите матрицу перехода от базиса e1=(3, 2), e2=(2, 1) к базису e1’=(2, −2), e2’=(−1, 6)
- •20) Найдите размерность и базис линейной оболочки системы столбцов
- •23) Найдите общее решение системы линейных уравнений
- •24) Выясните, являются ли векторы a1=(2, −3, 1), a 2=(3, −1,5), a3=(1, −4, 3) линейно зависимыми.
- •27) Найдите фундаментальную систему решений системы линейных уравнений
- •30) Найдите размерность пространства решений уравнения
- •42) Найдите какие-нибудь матрицы A и В второго порядка, для которых rang (AB)≠rang(BA), или докажите, что таких матриц не существует.
- •43) Является ли линейным пространством множество всех матриц второго порядка (с обычными операциями), у каждого из которых линейно зависимые строки?
- •59) Найдите собственные векторы и собственные значения оператора дифференцирования в пространстве бесконечно дифференцируемых функций.
- •79) Является ли линейным пространством множество всех квадратичных форм с обычными операциями сложения и умножения на вещественные числа?
- •81) Укажите какой-нибудь базис пространства всех симметричных матриц второго порядка.
- •86) Найдите собственные значения и собственные векторы оператора, заданного матрицей
- •91) Запишите в матричном виде квадратичную форму
- •93) Образует ли линейное пространство множество всех невырожденных матриц второго порядка с обычными операциями сложения матриц и умножения матриц на вещественные числа?
- •95) Найдите матрицу линейного функционала, который каждой строке чисел из R3 ставит в соответствие сумму этих чисел.
- •101) Всегда ли произведение симметричных матриц является симметричной матрицей?
- •102) Решите матричное уравнение
- •103) Приведите пример матрицы A размера 3х3, у которой все элементы разные и rang(A)=1, или докажите, что такой матрицы не существует.
- •118) Определите координаты концов A и B отрезка, который точками C(2, 2) и D(1, 5) разделён на три равные части.
- •121) Отрезок с концами в точках А(3, −2) и В(6, 4) разделен на три равные части. Найдите координаты точек деления.
- •122) Даны две смежные вершины параллелограмма А(-2, 6), В(2,8) и точка пересечения его диагоналей М(2, 2). Найдите две другие вершины.
- •123) Разложите вектор v(3,−2) по векторам e1(1, 3), e2(2, −1).
- •124) Даны вершины треугольника: А(1,1), В(4,1), С(4,5). Найдите косинусы углов треугольника.
- •125) Найдите все значения параметра a, при которых точки А(1, а), В(3, 2−а), С(а, −5) лежат на одной прямой.
- •130) Вычислите площадь треугольника ABC с вершинами А(1,1,1), В(2,3,4), С(4,3,2).
- •131) Вычислите объём тетраэдра с вершинами А(1,1,1), В(2,0,2), С(2,2,2), D(3,4,−3).
- •135) При каком значении параметра a точки А(1, 2, 3), В(2, -1,5) и С(-1, а, -1) расположены на одной прямой?
- •По следствию 9.10 теоремы 9.19 эти плоскости не являются параллельными. Следовательно, они пересекаются не под прямым углом, поскольку также 1*1+2*0+3*3 отлично от нуля.
- •144) Нарисуйте параллелепипед и укажите те его диагонали, которые соответствуют векторам a+b-c и a-b+c, если векторы a, b, c соответствуют ребрам этого параллелепипеда.
- •145) Нарисуйте параллелепипед и укажите те его диагонали, которые соответствуют векторам a+b-c и a-b+c, если векторы a, b, c соответствуют ребрам этого параллелепипеда.
- •152) Начало координат перенесено в точку (2, 1), а оси координат повернуты на угол 60 градусов. Как в такой системе координат будут записываться координаты прежнего начала координат?
- •165) Найдите какой-нибудь базис в пространстве всех векторов их R3, перпендикулярных вектору {1,2,3}.
- •166) При параллельном переносе точка А(1, 2, 3) переходит в точку А’(3,1,2). В какую точку переходит точка В(2, 3, 1)?
- •189) Укажите какой-нибудь базис в пространства всех квадратичных матриц на R2 (с обычными операциями).
- •194) Образует ли линейное пространство множество всех ступенчатых матриц третьего порядка с обычными операциями?
91) Запишите в матричном виде квадратичную форму
Q(X ) 6x |
2 |
4x x |
|
4x x |
5x |
2 |
7x |
2 |
|
|
2 |
|
|
||||||
1 |
|
1 |
1 |
3 |
2 |
|
3 |
|
Решение
В соответствии с определением матрицы квадратичной формы:
|
|
|
|
|
|
6 |
2 |
2 |
x |
|
||
|
|
|
|
|
|
|
|
|
|
|
1 |
|
Q(x) x |
x |
2 |
x |
3 |
|
2 |
5 |
0 |
|
x |
2 |
|
1 |
|
|
|
|
|
|
|
|||||
|
|
|
|
|
|
2 |
0 |
7 |
|
|
|
|
|
|
|
|
|
|
x3 |
|
104
92) Является ли положительно определенной билинейная форма
B( X ,Y ) 25x y |
7x y |
2 |
|
1 |
1 |
1 |
7x |
2 |
y |
|
1 |
2x |
2 |
y |
2 |
|
|
?
Решение
Запишем билинейную форму в матричном виде и найдём определитель ее матрицы:
25 |
7 |
|
50 49 1 |
|
det |
|
|
|
|
|
7 |
2 |
|
|
|
|
|
Таким образом, определители миноров первого и второго порядков матрицы билинейной
формы положительны: |
|
1 |
25 0 |
да, является |
|
|
|||
|
|
1 0 |
||
|
2 |
|
||
|
|
|
|
(по критерию Сильвестра положительно определенности симметричной билинейной формы)
105

93) Образует ли линейное пространство множество всех невырожденных матриц второго порядка с обычными операциями сложения матриц и умножения матриц на вещественные числа?
Решение
Нет, поскольку нарушается определение линейного пространства16: операция сложения не определена на пространстве невырожденных матриц.
Проиллюстрируем на примере:
А их сумма
A
1 A 0
0 B 1
1B 1
1 1
det(A) ≠0
det(B) ≠0
det(A+B) =0 − вырожденная матрица.
16 Страница 35.
106

94) Останется ли множество Rnb1 , . . . ,bn считать строку a1b1 ,
линейным пространством, если суммой строк
. . . , an bn ?
Решение
a |
, . . . , a |
n |
|
1 |
|
|
и
Нет. Множество можно считать линейным пространством, только если выполнены 8
условий, ему присущих17. В нашем случае эти |
условия нарушаются. Например, это |
наглядно иллюстрируется на примере условия 3: |
сумма строки a1 , . . . , an и нулевой |
строки даст нулевую строку, а не a1 , . . . , an |
если результатом сложения считать |
a1b1 , . . . , an bn . |
|
17 Страница 35
107