Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
shkola-yachetennogo-rulevogo.pdf
Скачиваний:
220
Добавлен:
24.03.2016
Размер:
5.73 Mб
Скачать
Рис. 94. Силы, действующие на паруса яхты

В заключение остановимся на одном очень важном с точки зрения работы паруса моменте. Напомним, что с высотой скорость ветра возрастает. Если построить параллелограммы скоростей ветра на разных высотах паруса (рис. 93), можно видеть, что при скорости яхты 3,5 м/сек и угле истинного ветра 45° скорость вымпельного ветра с увеличением высоты от 2 до 12 м возрастает с 7.8 до 10 м/сек. При этом угол вымпельного ветра (УВВ) увеличивается от 25 до 30°.

Вот почему парус необходимо кроить так, чтобы для сохранения оптимального угла атаки он несколько закручивался снизу вверх, с «отвалом» задней шкаторины под ветер. Надо сказать, что эта закрутка, естественно, может быть больше при слабых ветрах, чем при сильных.

Основные сведения из теории паруса

Не менее важное значение, чем сопротивление корпуса, имеет сила тяги, развиваемая парусами. Чтобы яснее представить себе работу парусов, познакомимся с основными понятиями теории паруса.

Мы уже говорили об основных силах, действующих на паруса яхты, идущей с попутным (курсом фордевинд) и со встречным ветром (курсом бейдевинд). Выяснили, что сила, действующая на паруса, может быть разложена на силу, которая вызывает крен и снос яхты под ветер,—силу дрейфа и силу тяги (см.Рис 2 и 3).

Теперь посмотрим, как определяется полная сила давления ветра на паруса я от чего зависят силы тяги и дрейфа.

Чтобы представить работу паруса на острых курсах, удобно вначале рассмотреть плоский парус (рис. 94), который испытывает давление ветра под определенным углом атаки. В этом случае

за парусом образуются завихрения, на наветренной стороне его возникают силы давления, на подветренной — силы разрежения. Их результирующая R направлена примерно перпендикулярно к плоскости паруса. Для правильного понимания работы паруса ее удобно представить в виде равнодействующей двух составляющих сил: Х—направленной параллельно воздушному потоку (ветру) и Y—перпендикулярной ему.

138

Подобное построение позволяет легко убедиться, что с увеличением лобового сопротивления Х (при той же подъемной силе) тяга Т уменьшается.
Таким образом, есть два пути увеличения силы тяги, а следовательно, и скорости хода на острых курсах: увеличение подъемной силы паруса и уменьшение лобового сопротивления паруса и яхты.
В современном парусном спорте подъемную силу паруса увеличивают придавая ему вогнутую форму с некоторой «пузатостью» (рис. 96): размер от мачты до наиболее глубокого места «пуза» обычно составляет 0,3—0,4 ширины паруса, а глубина «пуза»—около 6—10% ширины. Подъемная сила такого паруса на 20—25% больше, чем совершенно плоского почти при том же лобовом сопротивлении.
Рис. 96. Профиль паруса

Сила X, направленная параллельно воздушному потоку, называется силой лобового сопротивления; она создается, кроме паруса, еще и корпусом, такелажем, рангоутом и экипажем яхты.

Сила Y, направленная перпендикулярно воздушному потоку, называется в аэродинамике подъемной силой. Именно она на острых курсах создает тягу в направлении движения яхты.

Если при том же лобовом сопротивлении паруса Х (рис. 95) подъемная сила увеличивается, например, до величины Y1, то, как показано на рисунке, равнодействующая подъемной силы и лобового сопротивления изменится на R и соответственно сила тяги Т увеличится до Т1.

Рис. 95. Зависимость сил тяги я дрейфа от подъемной силы и лобового сопротивления паруса

Правда, яхта с плоскими парусами идет чуть круче к ветру. Однако с «пузатыми» парусами скорость продвижения в лавировку больше благодаря большей тяге.

Заметим, что у пузатых парусов увеличивается не только тяга, но и сила дрейфа, а значит, крен и дрейф яхт с пузатыми парусами больше, чем со сравнительно плоскими. Поэтому «пузатость» паруса больше

6—7% при сильном ветре невыгодна, так как увеличение крена и дрейфа приводит к значительному повышению сопротивления корпуса и снижению эффективности работы парусов, которые «съедают» эффект увеличения тяги. При слабых ветрах лучше тянут паруса с «пузом» 9—10%, так как из-за малого общего давления ветра на парус крен невелик.

139

Любой парус при углах атаки больше 15— 20°, то есть при курсах яхты

40—50° к ветру и больше, позволяет уменьшить подъемную силу и увеличить лобовое сопротивление, поскольку на

Рис. 97. Работа стакселя подветренной стороне

образуются значительные завихрения. А так как основную часть подъемной силы создает плавное, без завихрений, обтекание подветренной стороны паруса, то уничтожение этих завихрений должно дать большой эффект.

Уничтожают завихрения, образующиеся за гротом, постановкой стакселя (рис. 97). Поток воздуха, попадающий в щель между гротом и стакселем, увеличивает свою скорость (так называемый эффект сопла) и при правильной регулировке стакселя «слизывает» вихри с грота.

Профиль мягкого паруса трудно сохранить неизменным при различных углах атаки. Раньше на швертботах ставили сквозные латы, проходящие через весь парус, — их делали более тонкими в пределах «пуза» и более толстыми к задней шкаторине, где парус гораздо площе. Сейчас сквозные латы ставят главным образом на буерах и катамаранах, где особенно важно сохранить профиль и жесткость паруса при малых углах атаки, когда обычный парус уже полощет по передней шкаторине.

Если источником подъемной силы является только парус, то лобовое сопротивление создает все, что оказывается в потоке воздуха, обтекающем яхту. Поэтому улучшение тяговых свойств паруса может быть достигнуто также и за счет снижения лобового сопротивления корпуса яхты, рангоута, такелажа и экипажа. Для этой цели используют различного рода обтекатели на рангоуте и такелаже.

Величина лобового сопротивления паруса зависит от его очертаний. По законам аэродинамики лобовое сопротивление крыла самолета тем меньше, чем оно уже и длиннее при той же площади. Вот почему парус (по существу то же крыло, но поставленное вертикально) стараются делать высоким и узким. Это позволяет также использовать верховой ветер.

Лобовое сопротивление паруса в очень большой степени зависит от состояния его передней кромки. Передние шкаторины всех парусов должны быть туго обтянуты, чтобы не допускать возможности вибраций.

Необходимо упомянуть еще об одном весьма важном обстоятельстве — так называемой

центровке парусов.

140

 

Из механики известно, что всякая сила

 

определяется ее величиной, направлением и

 

точкой приложения. До сих пор мы

 

говорили только о величине и направлении

 

сил, приложенных к парусу. Как мы увидим

 

дальше, знание точек приложения имеет

 

большое значение для понимания работы

 

парусов.

 

Давление ветра распределяется по

 

поверхности паруса неравномерно (большее

 

давление испытывает его передняя часть),

 

однако для упрощения сравнительных

 

расчетов считают, что оно распределяется

 

равномерно. Для приближенных расчетов

 

равнодействующую силу давления ветра на

 

паруса полагают приложенной к одной

 

точке; за нее принимают центр тяжести

 

поверхности парусов, когда они помещены в

 

диаметральной плоскости яхты. Эту точку

 

называют центром парусности (ЦП).

 

Остановимся на самом простом графическом

Рис. 98. Графический способ нахождения

способе определения положения ЦП (рис.

центра парусности

98). Вычерчивают парусность яхты в

 

нужном масштабе. Затем на пересечении

 

медиан — линий, соединяющих вершины

треугольника с серединами противоположных сторон, — находят центр каждого паруса. Получив таким образом на чертеже центры О и O1 двух треугольников, составляющих грот и стаксель, проводят через эти центры две параллельные линии ОА и O1Б и на них откладывают в противоположных направлениях в любом, но одинаковом масштабе столько линейных единиц, сколько квадратных метров в треугольнике; от центра грота откладывают площадь стакселя, а от центра стакселя — площадь грота. Концевые точки А и В соединяют прямой АБ. Другой прямой — O1O соединяют центры треугольников. На пересечении прямых А Б и O1O будет находиться общий центр. Четырехугольный грот предварительно разбивают диагональю на два треугольника, вычисляют их площади и описанным образом определяют отдельно ЦП такого грота.

Как мы уже говорили, силе дрейфа (будем считать ее приложенной в центре парусности) противодействует сила бокового сопротивления корпуса яхты. Силу бокового сопротивления считают приложенной в центре бокового сопротивления (ЦБС). Центром бокового сопротивления называется центр тяжести проекции подводной части яхты на диаметральную плоскость.

Центр бокового сопротивления можно найти, вырезав контур подводной части яхты из плотной бумаги и поместив эту модель на лезвие ножа. Когда модель уравновесится, легко нажимают на нее, затем поворачивают на 90° и снова уравновешивают. Пересечение этих линий дает нам центр бокового сопротивления.

Когда яхта идет без крена, ЦП должен лежать на одной вертикальной прямой с ЦБС (рис. 99). Если ЦП лежит впереди ЦБС (рис. 99, б), то сила дрейфа, смещенная вперед относительно силы бокового сопротивления, поворачивает нос судна под ветер — яхта уваливается. Если ЦП окажется позади ЦБС, яхта станет поворачиваться носом к ветру, или приводиться (рис. 99, в).

141

И чрезмерное приведение к ветру, и в особенности уваливание (неправильная центровка) вредны для хода яхты, так как заставляют рулевого все время работать рулем, чтобы сохранить прямолинейность движения, а это увеличивает сопротивление корпуса и снижает скорость судна. Кроме того, неправильная центровка приводит к ухудшению управляемости, а в некоторых случаях — к ее полной потере.

Если мы отцентруем яхту так, как показано на рис. 99, а, то есть ЦП и ЦБС окажутся на одной вертикали, то судно будет очень сильно приводиться и управлять им станет весьма трудно. В чем дело? Здесь две главные причины. Во-первых, истинное расположение ЦП и ЦБС не совпадает с теоретическим (оба центра сдвинуты вперед, но неодинаково).

Во-вторых, и это главное, при крене сила тяги парусов и сила продольного сопротивления корпуса оказываются лежащими в разных вертикальных

плоскостях (рис. 100), Рис. 99. Центровка яхты получается как бы рычаг,

заставляющий яхту приводиться. Чем больше крен, тем больше склонность судна приводиться.

Чтобы ликвидировать такое приведение, ЦП помещают впереди ЦБС. Возникающий с креном момент силы тяги и продольного сопротивления, заставляющий яхту приводиться, компенсируется улавливающим моментом сил дрейфа и бокового сопротивления при переднем расположении ЦП. Для хорошей центровки приходится ЦП помещать впереди ЦБС на расстоянии, равном 10—18% длины яхты по ватерлинии. Чем менее остойчива яхта и чем выше поднят ЦП над ЦБС, тем больше в нос надо его передвигать.

142

Чтобы яхта имела хороший ход, ее надо отцентровать, то есть поставить ЦП и ЦБС в такое положение, при котором судно на курсе бейдевинд в слабый ветер было полностью уравновешено парусами, иными словами — было устойчиво на курсе с брошенным или закрепленным в ДП рулем (допускается легкая склонность к уваливанию при совсем слабом ветре), а при более сильном ветре имело склонность приводиться. Каждый рулевой должен уметь правильно центровать яхту. На большинстве яхт склонность приводиться увеличивается, если перебраны задние паруса и потравлены передние. Если же перебраны передние и перетравлены задние паруса, судно будет уваливаться. При увеличении «пузатости» грота, а также плохо стоящих парусах яхта склонна приводиться в большей степени.

Если яхта слишком приводится, следует перенести вперед ЦП или сместить назад ЦБС.

Чтобы сдвинуть вперед ЦП, можно:

— наклонить или передвинуть

 

вперед мачту;

Рис. 100. Влияние крена на приведение яхты к ветру

 

— перенести вперед (если позволяет обмер) точку крепления штагов передних парусов;

увеличить площадь передних парусов; , Чтобы сдвинуть назад ЦБС, можно:

положить руль под ветер;

подобрать шверт, особенно если он длинный и узкий—так называемый мечевидный;

перенести шверт или плавник назад;

дать дифферент на корму. Если яхта слишком уваливает, надо перенести вперед ЦБС или назад ЦП. Для этого выполняют операции, обратные указанным.

143

Каждый рулевой должен помнить, что центровка яхты очень важна для увеличения скорости хода и безопасности. плавания.

144