Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Билибин / TITLE_.docx
Скачиваний:
213
Добавлен:
21.03.2016
Размер:
454.14 Кб
Скачать

5.4. Газоразделительные мембраны

Газопроницаемость полимеров и некоторых других мате-риалов представляет собой способность пропускать газы при перепаде давления или температуры (в общем случае разности химических потенциалов) по разные стороны газопроницаемой мембраны. В зависимости от природы и структуры полимерного материала протекание газов через мембрану может реализоваться по разным механизмам — в виде диффузионного потока, путем молекулярной диффузии, вязкостного течения и истечения через отверстия. Последний способ переноса газов через пористые мембраны используется для фильтрации воздуха от частиц микронного и субмикронного размера.

Для газоразделительных мембран, позволяющих отделять молекулы одних газов от других, используются однородные и не имеющие отверстий полимерные материалы. В этом случае перенос газов обусловлен диффузионной газопроницаемостью, которая представляет собой растворение газа в материале мембраны с одной ее стороны, диффузии молекул растворенного газа в полимере и выделение их с другой стороны мембраны.

Соотношение объема газа, прошедшего через мембрану, с параметрами процесса может быть представлено формулой

где: Q — объем газа, прошедшего при перепаде давления p через мембрану толщиной x и площадью s за время t,

P — коэффициент газопроницаемости полимера

P = D . ,

где D — коэффицент диффузии (см2/с);  — коэффициент растворимости (кгс/cм2)-1.

Таким образом, коэффициент газопроницаемости Р соответствует объему газа при нормальных условиях, прошедшего в единицу времени (с) через мембрану площадью 1 см2 и имеющей толщину в единицу длины (1 см) при единичной разности давлений газа в 1 кгс/см2. При использовании других единиц размерности размерность Р может быть выражена в м2/с Н/м2. В табл. 4 приведены коэффициенты газопроницаемости некоторых полимеров [ Р.108, см2/(сек.кгс/см2)] при 20 о С для различных газов

Таблица 4

Полимер

N2

O2

H2

CO2

Каучук

диметилсилоксановый

изопреновый

бутадиеновый

хлоропреновый

Полиэтилен низкой пл.

Полистирол

Поликарбонат

Полипропилен

Полиамид-6

Поливинилхлорид

Полиэтилентерефталат

182

5,7

3,7

0,7

1,05

0,3

0,22

0,22

0,008

0,006

0,005

368

15,4

11,5

2,4

2,6

1,3

1,4

0,87

0,02

0,034

0,024

378

33,5

26,1

7,9

5,7

6,7

10,2

4,1

0,7

0,48

1582

95

97

14,8

12,2

5,9

5,6

3,00

0,044

0,10

0,14

Как видно из данных таблицы, коэффициенты газопроница-емости очень сильно зависят и от природы газа, и от химической природы полимера мембраны. Наибольшей газопроницаемостью обладают полимеры, находящиеся в высокоэластическом состоянии — каучуки. При этом чем ниже температура стеклования полимера, связанная с гибкостью его макромолекул, тем выше коэффициент газопроницаемости. В целом, коэффициенты газопроницаемости возрастают с увеличением гибкости макромолекул и уменьшением межмолекулярных взаимодействий.

Переход полимера из высокоэластического в стеклообразное состояние сопровождается изменением характера зависимости коэффициента газопроницаемости от температуры (перелом прямой, характеризующей линейную зависимость lg P от 1/T). Фазовые переходы в полимерах (плавление, кристаллизация) сопровождаются скачкообразным изменением коэффициента газопроницаемости — значительным его уменьшением при кристаллизации и возрастанием при плавлении кристаллических областей. В аморфно-кристаллических полимерах перенос молекул газа реализуется главным образом через аморфные области. Кроме фазовых и физических состояний полимера на газопроницаемость могут влиять и другие факторы — ориентация, наличие надмолекулярных структур, механических напряжений в образце.

Вообще различие коэффициентов газопроницаемости газов означает различие скоростей протекания разных газов через газоразделительную мембрану при прочих равных условиях. Результатом этого является значительное различие в составе смеси газов, протекающих через мембрану, по разные стороны мембраны. Смесь газов, прошедших через мембрану, оказывается обогащенной тем газом, коэффициент газопроницаемости для которого больше. Это свойство полимерных газоразделительных мембран определило их широкое использование в областях, где необходимо регулирование состава газовой смеси. В частности, газоразделительные мембраны широко используются в узлах медицинских аппаратов типа “искусственное легкое”, а также в замкнутых системах обитания человека, где необходима регенерация воздуха (подводные лодки, космические корабли). Кроме того, знание коэффициентов газопроницаемости для различных пар газ — полимер необходимо при разработке новых полимерных материалов различного назначения — надувных конструкций, упаковочных материалов, шин. С газопроницаемостью связаны защитные свойства полимерных покрытий, скорость окисления полимеров. Большую роль гаопроницаемость полимеров играет в обмене веществ в живых организмах — это явление лежит в основе процессов дыхания.

Изучение процессов протекания газов через полимерные мембраны имеет огромное практическое и научное значение. Это объясняется не только тем значением, которое оно имеет для понимания газообмена в живых организмах, разработки новых направлений создания полимерных материалов с заданными свойствами, но и для изучения структуры полимерных материалов, характера движения макромолекул, вопросов диффузии и растворимости газов в полимерах.

В последние годы проблема разработки новых газо-разделительных мембран приобрела особое значение в связи с требованиями современной техники. Внимание исследователей привлекают новые полимеры, в частности, жидкокристаллические. В связи с тем, что эти полимеры имеют больше фазовых и структурных переходов, чем обычные, их использование в качестве газоразделительных мембран открывает возможности точного и тонкого разделения газовых смесей сложного состава.

Л и т е р а т у р а

Бристон Дж.Х., Катан Л.Л. Полимерные пленки. М.: Химия,

1993.

Брок Т. Мембранная фильтрация. М.: Мир, 1987.

Говарикер В.Р., Висванатхан Н.В., Шридхар Дж. Полимеры. М.:

Наука, 1990.

Кулезнев В.Н., Шершнев В.А. Химия и физика полимеров. М.:

Высшая школа, 1988.

Моро У. Микролитография. Ч. 1. М.: Мир, 1990.

Реакции на полимерных подложках в органическом синтезе/

Под ред. — П. Ходж и Д. Шеррингтон, М.: Мир, 1983.

Тагер А.А. Физикохимия полимеров. М.: Химия, 1978.

Энциклопедия полимеров. Т. 1 — 3/ Отв. ред. В.А. Кабанов.

М.: Советская энциклопедия, 1972 — 1977.

Соседние файлы в папке Билибин