Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
I_1-30.doc
Скачиваний:
163
Добавлен:
20.03.2016
Размер:
312.32 Кб
Скачать

22. Споры и спорообразование у микроорганизмов, свойства спор, методы обнаружения спор.

Спорообразование наблюдается в условиях, неблагоприятных для вегетативных форм. У бактерий выделяют 3 вида спор:

  • ЭНДОСПОРЫ (истинные споры) – располагаются внутри, имеют высокий коэффициент светопреломления.

  • АРТОСПОРЫ – обр-ся в рез фрагментации вегетирующих Б!!

  • ХЛАМИДИОСПОРЫ (микроцисты) – формируются в рез утолщения стенок вегетирующей и накопления запасных пит в-в.

К спорообразованию способна лишь небольшая группа эубактерий, а из патогенных для чка только – Clostridium и Bacillus. Каждая вегетативная образует 1 эндоспору. Споры УСТОЙЧИВЫ к t°С, высыханию, радиации и химическим в-вам (включая 70° этанол). Могут сохраняться оч длительное время. Предположительно споры могут храниться в сухой почве до 1000 лет, но фактически уже за 50 лет 90% спор теряют жизнеспособность.

Морфологически споры м.б. круглыми, овальными, эллиптическими, некоторые снабжены «рёбрами жесткости».

ПРОЦЕСС СПОРУЛЯЦИИ начинается сразу при возникновении дефицита питательных в-в и длится около 8ч, при этом никаких внешних источников питания или энергии не требуется. Стимулируют – глюкоза, Р и NH4, угнетают –пептон, лактоза, NaCl, CaCl2. Выделяют след ЭТАПЫ:

  1. Подготовительная стадия – прекращается деление, начинается накопление липидных включений.

  2. Стадия предспоры – появляется эллиптическая оболочка, окружающая участок цитоплазмы с изменённой плотностью и тинкториальными свойствами.

  3. Формирование оболочки

  4. Стадия созревания споры – происходит её уплотнение и прекращение любых перемещений в –спорангии.

  5. Разрушение родительской .

  6. В оптимальных условиях происходит прорастание споры. Сначала она активно поглощает воду и набухает, усиливается дыхание, возрастает активность ферментов, происходит выделение АК – активация метаболизма (в этот период спора УТРАЧИВАЕТ ТЕРМОРЕЗИСТЕНТНОСТЬ). Затем спора лопается и из неё выходит вегетативная форма.

23. Методы микроскопии в микробиологии: световая, темнопольная, фазовоконтрастная, люминесцентная. Их практическое применение.

Размеры микробов, имеющих клеточное строение, составляют 0,2–20 мкм и они легко обнаруживаются в иммерсионном микроскопе. Вирусы во много раз меньше. Диаметр самых больших из них, например вируса натуральной оспы, около 300 нм, а у самых мелких составляет 20–30 нм. Ввиду этого для выявления вирусов используются электронные микроскопы.

В микробиологических исследованиях применяют световые и элек­тронные микроскопы; методы оптической и электронной микроскопии.

Оптический микроскоп. Наиболее важной оптической частью микро­скопа являются объективы, которые делятся на сухие и иммерсионные.

Сухие объективы с относительно большим фокусным расстоянием и слабым увеличением применяются для изучения микроорганизмов, име­ющих крупные размеры (более 10–20 мкм), иммерсионные (лат. immersio – погружение) с фокусным расстоянием – при иссле­довании более мелких микробов.

При микроскопии иммерсионным объективом х90 обязательным ус­ловием является его погружение в кедровое, персиковое или в вазелиновое масло, показатели преломления света у которых близки предметному стеклу, на котором делают препараты. В этом случае падающий на препарат пучок света не рассеивается и, не меняя направления, попадает в иммерсионный объектив. Разре­шающая способность иммерсионного микроскопа находится в пределах 0,2 мкм, а максимальное увеличение объекта достигает 1350.

При использовании иммерсионного объектива вначале центрируют оптическую часть микроскопа. Затем поднимают конденсор до уровня предметного столика, открывают диафрагму, устанавливают объектив малого увеличения и при помощи плоского зеркала освеща­ют поле зрения. На предметное стекло с окрашенным препаратом наносят кап­лю масла, в которую под контролем гла­за осторожно погружают объектив, за­тем, поднимая тубус, смотрят в окуляр и вначале макро–, а потом микровинтом устанавливают четкое изображение объ­екта. По окончании работы удаляют салфеткой масло с фронтальной линзы объектива.

Микроскопия в темном поле зрения проводится при боковом освещении и обычно применяется при изучении подвижности бактерий или обнаружении патогенных спирохет, поперечник которых может быть меньше 0,2 мкм. Чтобы по­лучить яркое боковое освещение, обыч­ный конденсор заменяют специальным параболоидом–конденсором, в ко­тором центральная часть нижней линзы затемнена, а боковая поверхность зеркальная. Этот конденсор задерживает центральную часть параллель­ного пучка лучей, образуя темное поле зрения. Краевые лучи проходят через кольцевую щель, попадают на боковую зеркальную поверхность конденсора, отражаются от нее и концентрируются в его фокусе. Если на пути луча нет каких–либо частиц, он преломляется, падая на боковую зеркальную поверхность, отражается от нее и выходит из конденсора. Когда луч встречает на своем пути микробы, свет отражается от них и попадает в объектив – клетки ярко светятся. Так как для бокового освещения необходим параллельный пучок света, применяется только плоское зер­кало микроскопа. Обычно исследование в темном поле зрения проводится под сухой системой. При этом небольшую каплю материала поме­щают на предметное стекло и накрывают покровным, не допуская обра­зования пузырьков воздуха.

Фазово–контрастная и аноптральная микроскопия основаны на том, что оптическая длина пути света в любом веществе зависит от показателя преломления. Это свойство используют с целью увеличить контрастность изображения прозрачных объектов, какими являются микробы, т. е. для изучения деталей их внутреннего строения. Световые волны, проходя через оптически более плотные участки объекта, отстают по фазе от световых волн, не проходящих через них. При этом интенсивность света не меняется, а только изменяется фаза колебания, не улавливаемая глазом и фотопластинкой. Для повышения контрастности изображения фазовые колебания при помощи специальной оптической системы превращаются в амплитудные, хорошо улавливаемые глазом. Препараты в световом поле зрения становятся более контрастными – положительный контраст; при отрицательном фазовом контрасте на темном фоне виден светлый объект. Вокруг изображений нередко возникает ореол.

Большей четкости изображения малоконтрастных живых микробов (даже некоторых вирусов) достигают в аноптральном микроскопе. Одной из важнейших его деталей является линза объектива, расположенная вблизи «выходного» зрачка, на которую нанесен слой копоти или меди, поглощающий не менее 10 % света. Благодаря этому фон поля зрения приобретает коричневый цвет, микроскопируемые объекты имеют раз­личные оттенки – от белого до золотисто–коричневого.

Люминесцентная микроскопия основана на способности некоторых клеток и красителей светиться при попадании на них ультрафиолетовых и других коротковолновых лучей света. Люминесцентные микроскопы представляют собой обычные световые микроскопы, снабженные ярким источником света и набором светофильтров, которые выделяют коротко­волновую часть спектра, возбуждающую люминесценцию. Между зерка­лом микроскопа и источником света устанавливают сине–фиолетовый светофильтр (УФС–3, ФС–1 и пр.). На окуляр надевают желтый свето­фильтр (ЖС–3 или ЖС–18).

Различают собственную (первичную) флюоресценцию и наведенную (вторичную). Так как большая часть микробов не обладает собственной флюоресценцией, они обрабатываются красителями, способными флюо­ресцировать (вторичная люминесценция). В качестве флюорохромов ис­пользуют аурамин (для обработки микобактерий туберкулеза), акридин желтый (гонококки), корифосфин (коринебактерии дифтерии), флюоресцеинизотиоцианат (для мечения антител).

Люминесцентная микроскопия отличается рядом преимуществ: дает цветное изображение и значительную контрастность; позволяет обнару­жить живые и погибшие микроорганизмы, прозрачные и непрозрачные объекты; установить локализацию бактерий, вирусов и их антигенов в пораженных клетках организма.

Электронный микроскоп.В электронном микроскопе вместо света используется поток электронов в безвоздушной среде, на пути которых находится анод. Источником электронов является электронная пушка (вольфрамовая нить, разогреваемая до 2500–2900 °С). Оптические линзы заменены электромагнитами. Между вольфрамовой нитью и анодом возникает электрическое поле в 30 000–50 000 Вт, что сообщает элек­тронам большую скорость, и они, проходя через отверстие анода, попадают в первую электромагнитную линзу (конденсор). Электронные лучи на выходе из конденсора собираются в плоскости исследуемого объекта. Они отклоняются под разными углами за счет различной толщины и плотности препарата и попадают в объективную электромагнитную линзу, снабженную диафрагмой. Электроны, незначительно отклонившиеся при встрече с объектом, проходят через диафрагму, а отклонившиеся под большим углом – задерживаются, благодаря чему обеспечивается кон­трастность изображения. Линза объектива дает промежуточное увеличение изображения, которое наблюдается через смотровое окно. Проек­ционная линза может увеличивать изображение во много раз. Это изо­бражение принимается на флюоресцирующий экран и фотографируется. Разрешающая способность электронных микроскопов равна 1,0 –0,14нм

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]