Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Автоматика_лаб_практикум.doc
Скачиваний:
177
Добавлен:
15.03.2016
Размер:
2.7 Mб
Скачать

3 Лабораторная работа №1. Изучение и проверка работоспособности потенциометра и милливольтметра

Цель работы: изучение устройства и принцип действия автоматического потенциометра и милливольтметра, приобретение навыков по проверке работоспособности потенциометра и милливольтметра.

3.1 Теоретические сведения

Комплект технических средств для измерения температуры состоит из термоэлектрического преобразователя температуры (термопары) и вторичного прибора. Измерение температуры осуществляется косвенным методом – путем измерения с помощью вторичного прибора термоэлектродвижущей силы (термоЭДС) термопары, однозначно зависящей от разности температур рабочего (горячего) спая термопары и ее свободных концов. Эта зависимость (статическая характеристика термопары) стандартизована для температуры свободных концов, равной 0 0С. При температуре свободных концовТ0С величина ЭДС термопарыЕТ(t) отличается от стандартной на постоянную величинуЕ0(Т) и вычисляется по формуле

ЕТ(t) =Е0(t) –Е0(Т), (3.1)

где ЕТ(t) – ЭДС термопары при температуре рабочего спаяtС и температуре свободных концов соответственноТС;

Е0(t) – ЭДС термопары при при температуре рабочего спаяtС и температуре свободных концов 0С;

Е0(Т) – ЭДС термопары при температуре рабочего спаяТС и температуре свободных концов 0С.

По формуле (3.1) характеристика термопары может быть пересчитана для любой температуры свободных концов термопары.

В качестве вторичных приборов для измерения термоЭДС применяются милливольтметры и автоматические потенциометры. Шкалы вторичных приборов, предназначенных для работы с термопарами, градуированы в единицах температуры. Так как зависимости термоЭДС Е0(t) от температуры у различных типов термопар отличаются друг от друга, на шкале конкретного прибора указывается тип термопары, для которой проградуирована шкала данного прибора: ХК – хромель-копелевая термопара, ХА – хромель-алюмелевая и т.д. Термопары других марок в комплекте с данным прибором не могут применяться без градуировки его шкалы.

Следует помнить, что градуировка шкалы приборов может быть произведена и при температуре свободных концов термопары, отличной от 0 0С. В современных автоматических потенциометрах, предназначенных для работы с термопарами, предусмотрена автоматическая компенсация измерения действительной температуры свободных концов термопары для исключения возникающей при этом ошибки измерения температуры.

В основу работы потенциометра положен компенсационный метод измерения, заключающийся в уравновешивании (компенсации) измеряемой ЭДС известным падением напряжения. Принципиальная схема измерения ЭДС термопреобразователя компенсационным методом показана на рисунке 3.1. Схема содержит: Б – батарею; R– реостат;Rр– калиброванный реохорд; НГ – нуль-гальванометр; Т – термоэлектрический преобразователь (термопару); НЭ – нормальный элемент Вестона;RK– контрольное сопротивление; П – переключатель.

Простейшая потенциометрическая схема состоит из трёх взаимосвязанных электрических цепей – рабочей, измерительной и контрольной. В рабочей цепи под действием ЭДС батареи Б протекает ток Iр, величина которого определяется по закону Ома суммой трёх сопротивлений – реостатаR, сопротивленияRKи сопротивления реохордаRр.

Измерения будут производиться с минимальной погрешностью лишь при условии постоянства тока IР. Поскольку ЭДС батареи изменяется с течением времени вследствие необратимости протекающих в ней при разрядке электрохимических процессов, то и ток в рабочей цепи будет изменяться. Поэтомуперед началом работы необходимо установить определенное значение рабочего тока Iр. Установка рабочего тока производится с помощью контрольной цепи.Для этого переключатель П ставится в положение К (контроль), при этом термопара Т отключается от схемы, а нормальный элемент НЭ подключается так, что его напряжение сравнивается с падением напряжением на контрольном сопротивленииRК. Если ЕНЭ=IРRK , то в ток через нуль-гальванометр протекать не будет и его стрелка должна находиться на нулевой отметке. Это соответствует правильно установленному значению рабочего токаIР. Если ЕНЭIРRK,через нуль-гальванометр будет протекать ток и его стрелка будет находиться не на нулевой отметке. Тогдасопротивление R изменяется до тех пор, пока нуль-гальванометр НП не покажет отсутствие тока.

EMBED Visio.Drawing.11

Рисунок 3.1 – Принципиальная схема измерения термоЭДС

После установки рабочего тока переключатель П переводится в положение И для измерения термоЭДС, вырабатываемой термопарой Т. При постоянстве токаIрреохорд может рассматриваться как известный источник напряжения, величина которого определяется положением движка, а полярность – направлением тока в рабочей ветви. К реохорду встречно, через нуль-гальванометр НГ, подключён термопреобразователь Т с неизвестным значением термоЭДС. В случае неравенства ЕХи падения напряженияUАДна участке реохорда АД в измерительной цепи возникает напряжение разбаланса, наличие которого определяется по отклонению стрелки нуль-гальванометра. При перемещении движка реохорда в направлении, соответствующем уменьшению напряжения разбаланса, в момент равенства ЕХ=UАДстрелка нуль-гальванометра установится на нулевой отметке, т.е. ток в измерительной цепи будет равен нулю, и по шкале калиброванного реохорда можно определить величину падения напряжения, а следовательно, и неизвестную ЭДС.

Компенсационные измерительные схемы широко применяют в технологическом контроле в связи с высокой точностью измерения и возможностью автоматизации процесса уравновешивания схемы.

Принцип действия милливольтметров основан на взаимодействии проводника (рамки), по которому протекает электрический ток, и магнитного поля постоянного магнита. Рамка 1 (рисунок 3.2), выполненная из нескольких сотен последовательных витков тонкой изолированной проволоки (медной, алюминиевой), помещается в магнитное поле постоянного магнита 3. При этом рамка имеет возможность поворачиваться на некоторый угол, для чего она крепится с помощью специальных кернов и подпятников или подвешивается на растяжках или подвесах (на рисунке не показаны). Для формирования равномерного радиального магнитного потока служит цилиндрический сердечник 4. При прохождении тока по рамке возникают силы F1и F2, направленные в разные стороны и стремящиеся повернуть рамку вокруг оси.

Рисунок 3.2 – Принципиальная схема измерения термоЭДС с помощью милливольтметра

Противодействующий момент создается спиральными пружинами 2 (нижняя не показана), которые также служат для подвода термоЭДС к рамке. В некоторых типах милливольтметров рамка крепится с помощью двух вертикальных тонких ленточных растяжек (подвесов) из фосфористой бронзы, которые, как и спиральные пружинки, служат для создания противодействующего момента и для подвода тока к рамке. При постоянной термоЭДС угол поворота рамки прибора обратно пропорционален сопротивлению цепи, т. е. зависит от длины соединительных проводов и температуры окружающей среды.

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Оставленные комментарии видны всем.