
- •А.С. Скачков
- •Предисловие
- •Часть III логика высказываний и предикатов Введение
- •Тема седьмая классическая логика высказываний
- •§7.1. Общая характеристика и особенности языка классической логики высказываний (клв)
- •§7.2. Пропозициональные связки; образование формул клв
- •§7.3. Истинностная функция пропозициональных связок, табличное определение истинности
- •§7.4. Виды и взаимоотношения формул и схем клв
- •§7.5. Схемы некоторых законов клв
- •7.6. Основные виды дедуктивных рассуждений, выраженные яклв
- •Тема восьмая классическое исчисление высказываний
- •§8.1. Логический смысл исчислений
- •§8.2. Классическое натуральное исчисление высказываний. Правила вывода
- •А, в ________ . А в
- •§8.3. Выводы и доказательства
- •§8.4. Эвристики натурального исчисления высказываний
- •Тема девятая язык и исчисление классической логики предикатов
- •§9.1. Общая характеристика классической логики предикатов
- •§9.2. Язык классической логики предикатов
- •§9.3. Запись имён и высказываний на яклп: термы и формулы
- •§9.4. Законы классической логики предикатов
- •§9.5. Исчисление предикатов первого порядка
- •Контрольные вопросы
- •Часть IV теория правдоподобных рассуждений Введение
- •Тема десятая основы формализации рассуждений с правдоподобным следованием
- •§10.1. Понятие о правдоподобном (вероятностном) рассуждении
- •§10.2. Фактический и логический смысл вероятности. Классическая (априорная) вероятность
- •§10.3. Статистическая (апостериорная) вероятность
- •§10.4. Исчисление условной вероятности
- •§10.5. Принцип обратной дедукции
- •Тема одиннадцатая разновидности индукции
- •§11.1. Понятие индукции в традиционной и современной логике
- •§11.2. Классификация видов индукции по характеру следования
- •§11.3. Индуктивные методы установления причинных связей
- •Тема двенадцатая умозаключения по аналогии, гипотеза и гипотетико-дедуктивный метод
- •§12.1. Аналогия: виды, приёмы повышения степени вероятности
- •§12.2. Гипотеза: виды, построение, этапы организации
- •§12.3. Требования к теоретическому обоснованию гипотез. Гипотетико-дедуктивный метод
- •Контрольные вопросы
- •Часть V основы аргументационного процесса Введение
- •Тема тринадцатая логические основы аргументации
- •§13.1. Основы теории аргументации
- •§13.2. Состав аргументации. Структура аргументационного процесса
- •§13.3. Доказательство и опровержение в аргументации
- •§13.4. Правила и логические ошибки в доказательстве и опровержении
- •Тема четырнадцатая внелогическая составляющая аргументационного процесса
- •§14.1. Спор и его виды
- •§14.2. Тактика спора
- •§14.3. Софистика. Уловки в полемике и эклектике
- •Контрольные вопросы
- •Перечень основных символов классической формальной логики
- •Библиографический список
- •Оглавление
§9.5. Исчисление предикатов первого порядка
Вывод в исчислении предикатов — это не пустая и конечная последовательность формул, каждая из которых является либо посылкой, либо получена из предыдущих формул согласно одному из дедуктивных принципов так, что после применения правил в и в все формулы, начиная с последней посылки и вплоть до результата применения данного правила, не используются в дальнейших шагах построения вывода, при этом ни одна переменная не ограничивает сама себя и ни одна индивидуальная переменная не ограничивается абсолютно более одного раза. В том случае, если никакая абсолютно ограничивавшаяся в выводе переменная не встречается свободно в неисключённых посылках и заключении, имеет место завершённый вывод. Определение доказательства в классическом исчислении предикатов идентично определению доказательства в классическом исчислении высказываний, поэтому завершённое доказательство понимается как завершённый вывод из пустого множества неисключённых посылок. Пошаговый переход от одной формулы к другой осуществляется в исчислении предикатов посредством выполнения всех правил вывода, применяемых в исчислении высказываний, к которым добавляются кванторные правила вывода, а именно: 1) введения, 2) исключения кванторов. К дедуктивным принципам введения кванторов относятся правила:
1.1. — введения квантора общности (обозначим символом «в»), выражаемое схемой:
А(x/ y, z1, …, zn)
______________________ , где y — абсолютное ограничение, z1, …, zn — ограничение.
xA(x, z1, …, zn)
1.2. — введения квантора существования (обозначим символом «в»), выражаемое схемой:
А(x/t)
___________ .
xА(x)
2.1.— исключения квантора общности (обозначим символом «и»), выражаемое схемой:
xА(x)
___________ .
А(x/t)
2.2. — исключения квантора существования (обозначим символом «и»), выражаемое схемой:
xА(x, z1, …, zn)
______________________ , где y — абсолютное ограничение, z1, …, zn — ограничение.
А(x/ y, z1, …, zn)
В правилах «введения квантора существования» и «исключения квантора общности» запись A(x/t) означает результат правильного замещения термом t всех имеющихся в формуле A(x) свободных вхождений предметной переменной x.
Пример
Пусть формула A(x) является записью выражения x(P2(x,y)Q2(x,z)). Допустим, что универсумом рассуждения является множество городов, вместо свободной переменной y подставляется терм — предметная постоянная, имеющая значение «Омск», вместо z — предметная постоянная, имеющая значение «Тара», и P2 — предикаторная постоянная, имеющая значение «старше», а Q2 — предикаторная постоянная, имеющая значение «моложе», тогда мы получаем правильную подстановку, поскольку суждение «Существуют города, такие что они старше Омска, но моложе Тары» истинно.
Но в силу того, что рассматриваемая формула x(P2(x,y)Q2(x,z)), являясь выполнимой, не является общезначимой формулой логики предикатов, можно осуществить и такую подстановку термов вместо свободных переменных y и z, что данная формула будет иметь всегда ложное значение. Допустим, что универсумом рассуждения является множество людей, вместо свободной переменной y подставляется сложный функциональный терм, имеющий значение «являться отцом человека», вместо z — сложный функциональный терм, имеющий значение «являться предком человека», и P2 — предикаторная постоянная, имеющая значение «младше», а Q2 — предикаторная постоянная, имеющая значение «старше», тогда получаем неправильную подстановку, поскольку суждение «Существуют люди, такие что они старше отцов, но моложе потомков» является ложным всегда. В данном случае свободно входящая в подставляемые сложные функциональные термы переменная «человек» оказалась в результате этой подстановки связанной (попала в область действия квантора), что обусловило семантическую некорректность формулы. Правильной называется такая подстановка терма t вместо всех свободных вхождений предметной переменной x формулы А(x), при которой ни одна входящая в этот терм переменная не окажется связанной на местах, где этот терм появляется в результате подстановки. Запись А(x/ y, z1, …, zn) в правилах «введения квантора общности» и «исключения квантора существования» есть фиксация частного случая правильной подстановки предметной переменной y на место всех свободных вхождений предметной переменной x в выражении А(x, z1, …, zn). Содержащиеся в правилах «введения квантора общности» и «исключения квантора существования» указания вида «y — абсолютное ограничение; z1, …, zn — ограничение» обусловлены тем, что с содержательной точки зрения свободные предметные переменные являются пробегающими по универсуму рассуждения (некоторого множества предметов), принимая в выбранном универсуме любые значения (в таком случае они используются в интерпретации всеобщности). Но будучи включёнными в состав формул логики предикатов предметные переменные иногда не выполняют данную роль, поскольку не выступают в качестве знаков, обозначающих именно любой объект универсума рассуждения (т. е. используются в интерпретации всеобщности). Таким образом, имеют место два возможных случая функционирования предметной переменной в составе формул. Свободная индивидная переменная используется в формуле в интерпретации всеобщности тогда и только тогда, когда в составе этой формулы данная предметная переменная трактуется как знак, обозначающий любой объект из универсума рассуждения.
Пример
В выражении x + y = y + x, представляющем собой закон перестановочности сложения, переменные x и y употреблены в интерпретации всеобщности, так как это соотношение истинно при любых значениях x и y. Другую ситуацию имеем в том случае, когда переменные входят в состав, например, математических уравнений. Так, в выражении x + 5 = 8 переменная x уже не используется в интерпретации всеобщности, так как не обозначает произвольный объект из универсума. Напротив, возможные значения для x строго фиксированы, т. е. ограничены условием данного утверждения. В этом случае говорят, что переменная использована в условной интерпретации.
Используя вышеозначенный перечень и истолкование правил вывода, обратим внимание на тот факт, что понятия вывода и доказательства в классической логике предикатов остаются формально теми же, что и в классической логике высказываний, поэтому в логике предикатов работают все правила вывода логики высказываний, но к ним добавляются правила квантификации. По этим же причинам в качестве эвристик в исчислении логики предикатов используются все эвристики исчисления логики высказываний, но к ним добавляется ещё одна, четвёртая эвристика. 4-я эвристика заключается в применении 1-й и 2-й эвристик для выбора посылок после того, как применение всех шагов по первой эвристике привело к формуле вида xA или xA.
Пример
Обоснованием утверждения о выводимости - xP(x,y,a)xP(x,y,a) будет:
_______ _______________________ |
1. xP(x,y,a) — пос. (1 эвристика). 2. P(x,y,a) — пос. (4 эвристика). 3. xP(x,y,a) — в, 2. 4. P(x,y,a) — в, 1, 3. 5. P(x,y,a) — и, 4. 6. xP(x,y,a) — в, 5, x — абс. огр.; y — огр. 7. xP(x,y,a)xP(x,y,a) — в, 6. |
Разбирая содержание данного параграфа, следует осознаваться его связанность с силлогистикой Аристотеля, о чём было сказано ранее, равно как данный параграф не следует брать в отрыве от материала, также изложенного ранее в связи с операциями логики классов (булевой алгебры).