- •Оглавление
- •Раздел 1. Теория турбинных ступеней.
- •Цель, задачи, предмет изучения и основное содержание дисциплины «стд. Судовые турбомашины», ее роль и место в системе подготовки специалиста в соответствии с требованиями гос впо и кт
- •Назначение паровой турбины( турбомашины) и ее особенности как теплового двигателя. Принцип действия пт
- •Классификация паровых турбин судовых энергетических установок
- •А). Основные уравнения парового потока в турбине
- •1. Геометрические характеристики турбинной ступени
- •2. Понятие об элементарной плоской турбинной ступени. Геометрические характеристики турбинной решетки.
- •3. Преобразование энергии пара в активной и реактивной турбинных ступенях
- •1. Определение скорости выхода пара из каналов направляющего аппарата и рабочей решетки.
- •1.1. Определение скорости выхода пара из каналов рабочей решетки
- •1.3. Понятие о степени реакции
- •2.1 Влияние косого среза на работу решетки
- •2.2. Расход пара через решетку. Определение высоты лопаток
- •1. Физическая сущность потерь кинетической энергии пара
- •2. Аэродинамические характеристики решеток и их определение
- •Б). Влияние числа Маха на потери энергии
- •3. Влияние конструктивных факторов на потери энергии
- •1. Силовое воздействие потока пара на рабочие лопатки
- •2. Работа на окружности турбинной ступени
- •3. Общее выражение для кпд на окружности турбинной ступени
- •1. Определение и состав внутренних потерь
- •2. Общая характеристика потерь на протечки через зазоры
- •3.Потери на протечки через зазоры в реактивной и активной турбинных ступенях
- •1. Внутренние потери энергии в активной турбинной ступени
- •2. Потери энергии от влажности пара и неучтенные потери
- •3. Внутренняя работа и внутренний кпд турбинной ступени
- •1. Применение радиальных турбинных ступеней в турбомашинах
- •2. Кинематика рабочей среды в радиальных турбинных ступенях
- •Очевидно, что
- •3. Силовое воздействие потока рабочей среды в радиальных турбинных ступенях
- •1. Методы и задачи теплового расчета, исходные данные
- •Давление пара за турбинной ступенью р1.
- •Адиабатный перепад на турбинную ступень:
- •Располагаемый теплоперепад на турбинную ступень
- •Б). Определение формы межлопаточных каналов направляющих решеток
- •3. Оценка основных геометрических размеров ступени
- •1. Расчет направляющего аппарата
- •В). Расчет потерь энергии в направляющей решетке
- •Д). Построение входного треугольника скоростей
- •Особенности расчета рабочих лопаток
- •Б). Определение угла выхода пара из рабочей решетки
- •Д). Расчет потерь энергии в рабочей решетке
- •Расчет внутреннего кпд и внутренней мощности турбинной ступени
- •1. Принцип действия и устройство колес со ступенями скорости
- •2. Треугольники скоростей колеса с двумя ступенями скорости
- •3. Процесс в диаграмме h-s для колеса с двумя ступенями скорости
- •1. Работа и кпд на окружности двухвенечного колеса скорости
- •2. Область применения колес со ступенями скорости
- •1. Принципиальное устройство многоступенчатых паровых турбин
- •2. Процесс в диаграмме h-s для многоступенчатой паровой турбины
- •3. Понятие о возвращенном тепле. Связь между кпд многоступенчатой паровой турбины и кпд ее ступеней
- •1. Понятие об использовании выходной энергии мспт
- •2. Коэффициент использования выходной энергии
- •3. Процесс в диаграмме h-s при использовании выходной энергии
- •1. Эффективный кпд гтза и валопровода
- •2. Удельный и секундный расходы пара
- •3. Характеристика многоступенчатой паровой турбины
- •1. Определение осевого усилия, действующего на ротор многоступенчатой паровой турбины
- •2. Принцип действия думмиса и определение диаметра разгрузочного поршня
- •3. Осевые усилия, действующие на ротор многоступенчатой паровой турбины при работе на задний ход
2. Общая характеристика потерь на протечки через зазоры
Принципиальная схема зазоров в облопатывании турбинной ступени показана на рис.44.
В реактивной ступени (рис.44а) различают осевой δа и радиальный δr зазоры. Величина протечек пара определяется радиальными зазорами δr, поэтому их стремятся выбрать минимальными. Для того, чтобы уменьшить опасность аварии в случае непредвиденного задевания, на вершинах лопаток выполнено утонение. Величина зазоров δr у направляющих и рабочих лопаток обычно одинакова. С точки зрения надежности зазоры должны быть как можно больше, а с точки зрения экономичности – меньше. Зазоры в проточной части турбины должны обеспечивать надежность, а также и экономичность, т.е. выбираться оптимальными.
В ступени активного типа (рис.44б) иногда зазоры специально «уплотняют», т.е. на возможном пути пара устанавливают один–два ряда уплотняющих ножей.
В такой ступени различают:
δа – осевой зазор;
–открытый осевой зазор на периферии ступени;
–открытый осевой зазор в корневом сечении;
δr – радиальные зазоры.
Принято считать, что «основным» зазором в активной ступени является открытый осевой периферийный зазор .
В результате наличия зазоров появляются потери энергии пара в турбинных ступенях. Это связано либо с утечками пара либо с его подсосами.
Утечки – движение пара из основного потока в зазор, в результате которого количество пара совершающего полезную работу будет меньше на величину ∆G.
Подсосом – принято называть подмешивание инертного пара к его основному потоку. Подсос приводит к уменьшению средней кинетической энергии потока, что ведет также к уменьшению полезной работы, совершаемой паром.
Одним из основных факторов, определяющих величину протечек пара через зазоры, является степень реакции турбинной ступени. По мере увеличения степени реакции растет перепад давлений на рабочих лопатках (Рd>P1) и растут протечки пара.
Ранее (2.2) введено понятие степени реакции ступени на среднем диаметре ступени. Опыт показывает, что степень реакции изменяется по высоте лопатки, возрастая от её корня к периферии. Если степень реакции относится к среднему диаметру ступени, то степень реакции на периферии окажется больше , а степень реакции в корневом сечении – меньше . Связь между значениями ,и приближенно может быть определена формулами:
(2.7.2)
(2.7.3)
где – степень реакции на среднем диаметре ступени;
–отношение среднего диаметра к высоте лопаток.
При = 0 может случиться, что< 0, т.е. в корневом сечении будет подпор (давление на выходе больше чем на входе). Это вызывает дополнительные потери. Поэтому стремятся, чтобы было> 0 или≈ 0.
В этом случае определяют:
(2.7.4)
где принимают от 0 до 0,05.
В результате протечек пара через зазоры КПД ступени уменьшается. Величину потерь на протечки через зазоры будем обозначать через qз.
Эта потеря определяется разностью:
(2.7.5)
где Lи – работа на окружности без учета qз;
Lиз – работа на окружности с учетом потерь;
–коэффициент, учитывающий потери пара на протечки пара через зазоры.
Коэффициент потерь на протечки через зазоры можно определить из следующего выражения:
(2.7.6)
где G – расход пара через ступень;
∆G – протечки пара через зазоры;
а – коэффициент, учитывающий влияние условий работы ступени и её конструктивные особенности.
Рассмотрим протечки пара в активной и реактивной турбинных ступенях.