Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Roytberg_G_E__Strutynskiy_A_V_Serdechno-sosu

.pdf
Скачиваний:
243
Добавлен:
11.03.2016
Размер:
21.99 Mб
Скачать

 

 

 

 

 

 

 

Сосуды:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

коронарные,

 

 

 

 

 

 

 

 

 

скелетн.мышц,

 

Расширение

 

 

 

 

 

 

 

орг-в брюшн.пол.,

 

 

 

 

 

 

 

 

 

легочной артерии

 

 

 

 

 

 

 

 

 

Крупные вены

 

Расширение

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Скелетные мышцы

 

Активация гликогенолиза

 

 

 

 

 

 

 

Печень

 

Активация гликогенолиза

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Поджелудочная железа

 

Повышение секреции инсулина

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Миометрий

 

Расслабление

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Артериолы

 

Сужение

 

 

 

 

 

 

 

 

 

 

 

 

 

Активация фосфолипидного пути

 

НА

 

Вены

 

Сужение

 

a1

 

 

 

 

 

Положит. инотропный,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(Са2+-протеинкиназа С)

 

А

 

Миокард желудочков

 

 

 

 

 

 

 

Гипертрофия миокарда (при длительном

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

воздействии)

 

 

 

 

 

А

 

Внесинаптические окончания

 

Сужение сосудов

 

 

 

 

 

 

 

 

a2

 

Ингибирование аденилатциклазы

 

 

в сосудах

 

 

 

 

 

 

 

 

 

 

 

НА

 

Пресинаптические окончания

 

Расширение сосудов

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

симпатич. волокон сосудов

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Активация фосфолипидного пути

 

А

 

Тромбоциты

 

Агрегация тромбоцитов

 

 

 

 

 

 

 

 

 

 

В сердце, как известно, преобладают b1-адренорецепторы, стимуляция которых сопровождается положительным инотропным, хронотропным и дромотропным эффектами. В результате повышается сократимость миокарда, увеличивается ЧСС (положительный хронотропный эффект), сила и скорость сокращения предсердий и желудочков (положительный инотропный эффект), скорость расслабления миокарда, ускоряется проведение электрического импульса в атриовентрикулярном узле (положительный дромотропный эффект), увеличивается возбудимость сердечной мышцы (батмотропный эффект).

Стимуляция a1-рецепторов, также присутствующих в миокарде (хотя и в меньшем количестве), сопровождается положительным инотропным эффектом. Кроме того, длительное воздействие медиаторов на a1-адренорецепторы кардиомиоцитов ведет к постепенному развитию гипертрофии сердечной мышцы.

На рис. 1.33 показано, что чрезмерно высокая концентрация норадреналина в синапсах стимулирует a2-адренорецепторы, расположенные в пресинаптических окончаниях симпатических нервов, иннервирующих сосуды, что ведет к ингибированию высвобождения норадреналина. Наоборот, воздействие норадреналина на пресинаптические b2-рецепторы активирует высвобождение этого медиатора из нервных окончаний симпатических нервов.

Возбуждение парасимпатических нервов (n. vagi) сопровождается высвобождением медиатора ацетилхолина (АX), который взаимодействует с М-холинорецепторами клеток-мишеней, вызывая урежение сердечных сокращений (отрицательный хронотропный эффект), замедление проводимости по атриовентрикулярному узлу вплоть до полной блокады проведения (отрицательный дромотропный эффект), уменьшение силы и скорости сокращения (отрицательный инотропный эффект). Интересно, что ацетилхолин, освобождаемый из нервных окончаний парасимпатических волокон способен стимулировать М- холинорецепторы, расположенные на окончаниях симпатических волокон, что приводит к угнетению освобождения из них норадреналина (см. рис. 1.33).

Рис. 1.33. Симпатическая и парасимпатическая иннервация кардиомиоцита и действие медиаторов на рецепторы. Красными стрелками обозначена стимуляция адренергических рецепторов катехоламинами, черными — стимуляция М-холинрецепторов ацетилхолином, а также угнетение высвобождения На симпатическим нервом

В табл. 1.3 представлены основные эффекты стимуляции М-холинорецепторов.

Таблица 1.3

Важнейшие эффекты стимуляции М-холинорецепторов

 

Локализация

 

Эффекты

 

Механизмы

 

 

 

 

 

 

 

 

Уменьшение автоматизма

 

 

 

 

 

 

СА-узел

 

Отрицательный хронотропный

 

Гиперполяризация клеточных мембран

 

 

 

 

 

Снижение скорости диастолической деполяризации

 

 

 

 

 

Замедление проводимости (увеличение А-Н-интервала)

 

 

 

 

 

 

АВ-узел

 

Отрицательный дромотропный

 

 

 

 

 

 

 

Увеличение рефрактерного периода

 

Миокард предсердий

 

Отрицательный инотропный

 

Укорочение длительности ТМПД

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Гиперполяризация мембран

 

 

 

 

 

 

 

 

 

 

Укорочение рефрактерного периода

 

 

 

 

 

Замедление проведения

 

 

 

 

 

 

Волокна Пуркинье

 

Отрицательный дромотропный

 

 

 

 

 

 

 

Повышение автоматизма

 

Миокард желудочков

 

Отрицательный инотропный

 

Удлинение рефрактерного периода

 

 

 

 

 

Дисперсия реполяризации желудочков

 

 

 

 

 

 

 

 

 

 

 

 

 

Артериолы

 

Релаксация

 

Неизвестен (возможно, стимуляция эндотелиальных факторов расслабления)

 

 

 

 

 

 

Запомните

1.Стимуляция b1-адренорецепторов сопровождается увеличением сократимости миокарда предсердий и желудочков, ЧСС, скорости расслабления миокарда, ускорением проведения электрического импульса в АВ-узле, увеличением возбудимости сердечной мышцы.

2.Возбуждение a1-адренорецепторов также сопровождается положительным инотропным эффектом и, кроме того, при длительной активации симпатической нервной системы способствует постепенному формированию гипертрофии сердечной мышцы.

3.Стимуляция М-холинорецепторов (парасимпатическая нервная система) вызывает урежение сердечных сокращений, замедление проводимости по АВ-узлу, уменьшение силы и скорости сокращения сердечной мышцы.

Следует помнить также, что симпатические и парасимпатические влияния на сердце регулируются сердечными центрами продолговатого мозга и моста, корой головного мозга и гипоталамусом.

1.2. Сосудистая система

1.2.1. Морфология сосудистой системы

Примерно 84% общего объема крови сосредоточено в большом круге кровообращения; а еще около 16% — в малом круге и сердце. Сосудистая система представлена амортизирующими, резистивными, емкостными сосудами и капиллярами.

К амортизирующим сосудам относятся артерии эластического типа — аорта, легочная артерия и прилегающие к ним участки крупных артерий. Их стенка содержит большое количество эластических волокон, что позволяет амортизировать (сглаживать) значительные колебания артериального давления (АД), обусловленные систолическим выбросом крови в аорту и легочную артерию (эффект компрессионной камеры).

Резистивные сосуды (преимущественно концевые артерии и артериолы) характеризуются относительно малым просветом и толстыми гладкомышечными стенками. На их долю приходится около 50% общего сосудистого сопротивления кровотоку, хотя общая емкость их сравнительно невелика (рис. 1.34).

Рис. 1.34. Уровень давления (вверху) и распределение крови (внизу) в различных отделах сосудистого русла большого круга кровообращения

Запомните

Способность артериол существенно менять свой просвет является главным механизмом, регулирующим объемную скорость кровотока в различных сосудистых областях и распределение крови по разным органам.

Уровень АД в концевых артериях и артериолах снижается примерно в 1,5–2 раза по сравнению с давлением в аорте, а пульсирующий кровоток постепенно сменяется непрерывным.

В капиллярах, объем которых составляет около 6% объема крови, ток крови равномерный в разные фазы сердечного цикла. Истинные капилляры, т.е. сосуды, стенки которых содержат лишь один слой клеток эндотелия, лишены гладкомышечных элементов. В большинстве случаев они под прямым углом отходят от так называемых метартериол («основных каналов»), которые переходят в венулы (рис. 1.35). В области отхождения капилляров от метартериол имеются прекапиллярные сфинктеры. Именно от их сокращения или расслабления зависит, какая часть крови проходит через истинные капилляры, а какая часть по метартериолам попадает непосредственно в венулы, минуя истинные капилляры. Общий же объем кровотока через метартериолы и капилляры определяется соотношением прекапиллярного и посткапиллярного сопротивления артериол и венул.

Рис. 1.35. Схема микроциркуляторного сосудистого русла. Объяснение в тексте

Емкостные сосуды (венулы и вены) отличаются низким кровяным давлением. Они являются важнейшими депо крови в организме: даже в нормальных физиологических условиях в них сосредоточено до 64% крови. При патологии емкость венул и вен может увеличиваться еще больше.

1.2.2. Гемодинамика

Движение крови по сосудам подчиняется законам гемодинамики. Движущей силой кровотока является градиент давления между артериальной и венозной областями сосудистой системы. У взрослого здорового человека кровоток

всосудах носит, главным образом, ламинарный характер, причем центральный осевой поток крови, состоящий

восновном из форменных элементов, имеет максимальную скорость, а периферические слои, непосредственно прилежащие к стенке сосуда и состоящие из плазмы, — минимальную скорость (рис. 1.36, а). Турбулентный ток крови

внорме возникает в местах разветвлений и естественных сужений и изгибов аорты и крупных артерий (рис. 1.36, б).

Рис. 1.36. Распределение скоростей потока крови в поперечном сечении крупного артериального сосуда. Стрелками обозначены векторы скоростей

Средняя скорость кровотока в различных сосудистых областях зависит от градиента давлений в начале и в конце сосуда и величины сосудистого сопротивления, которое, в свою очередь, определяется вязкостью крови и поперечным сечением сосуда. Чем больше градиент давлений и/или чем меньше вязкость крови и суммарное поперечное сечение сосудов данной области, тем выше линейная скорость кровотока. В аорте она максимальна (50–70 см/с), в артериях и артериолах, суммарный поперечный просвет и сосудистое сопротивление которых во много раз больше, средняя линейная скорость падает (20–40 см/с в аорте и около 0,5 см/с — в артериолах). Наибольшей суммарной площадью просвета обладают капилляры. Здесь скорость движения крови не превышает 0,05 см/с.

Общее время прохождения «частиц» крови по большому и малому кругам кровообращения в норме составляет примерно

23 с.

Артериальное давление (АД) является важнейшим интегральным показателем функционирующей системы кровообращения. На протяжении сердечного цикла уровень АД постоянно меняется, повышаясь в начале изгнания и снижаясь во время диастолы. В момент сердечного выброса часть крови, находящейся в проксимальном сегменте восходящей аорты, получает значительное ускорение, тогда как остальная часть крови, обладающая инерцией, ускоряется не сразу. Это приводит к кратковременному повышению давления в аорте, стенки которой несколько растягиваются. По мере того как остальная часть крови ускоряет свое движение под влиянием пульсовой волны, давление в аорте начинает падать, но все же в конце систолы остается более высоким, чем в ее начале. Во время диастолы давление равномерно снижается, но АД не падает до нуля, что связано с эластическими свойствами артерий и

достаточно высоким периферическим сопротивлением.

Таким образом, уровень АД зависит от нескольких факторов:

·величины сердечного выброса;

·емкости сосудистой (артериальной) системы;

·интенсивности оттока крови;

·упругого напряжения стенок артериальных сосудов;

·объема циркулирующей крови и т.д.

Различают систолическое, диастолическое, пульсовое и среднее АД (рис. 1.37).

Систолическое АД АД) — это максимальное давление в артериальной системе, развиваемое во время систолы левого желудочка. Оно обусловлено в основном ударным объемом сердца и эластичностью аорты и крупных артерий.

Диастолическое АД АД) — это минимальное давление в артерии во время диастолы сердца. Оно во многом определяется величиной тонуса периферических артериальных сосудов.

Пульсовое АД (АДп) — это разность между систолическим и диастолическим АД.

Рис. 1.37. Схема определения систолического, диастолического, пульсового (а) и среднего (б) артериального давления. Объяснение и обозначения в тексте

Среднее АД (АДср) — это результирующая всех переменных значений АД на протяжении сердечного цикла, вычисленная путем интегрирования кривой пульсового колебания давления во времени (рис. 1.37, б):

где Р1, …, Рn — переменные значения давлений на протяжении сердечного цикла, n число измерений давления на протяжении сердечного цикла.

В клинике среднее АД для периферических артерий принято вычислять по формуле:

Среднее АД является важнейшей интегральной гемодинамической характеристикой системы кровообращения. Это та средняя величина давления, которая была бы способна при отсутствии пульсовых колебаний давления дать такой же гемодинамический эффект, какой наблюдается при естественном, колеблющемся движении крови в крупных артериях (И.А. Ефимова).

1.2.3. Регуляция кровообращения

Изменения центральной и региональной гемодинамики, постоянно происходящие в организме под действием разнообразных внешних и внутренних факторов, осуществляются за счет изменений минутного объема (сердечный выброс и ЧСС) и сосудистого сопротивления (просвет кровеносных сосудов, преимущественно артериол).

Местные (периферические) механизмы

Местные механизмы саморегуляции сосудистого тонуса обеспечивают адекватный кровоток в органах в зависимости от уровня метаболизма в них. Периферические механизмы саморегуляции позволяют поддерживать необходимую объемную скорость кровотока в жизненно важных органах (головной мозг, сердце, почки) даже при резком изменении системного АД — его падении или повышении.

Запомните

Резкое повышение системного АД, как правило, сопровождается сокращением гладкой мускулатуры артериол жизненно важных органов (эффект Бейлиса). В результате объемная скорость кровотока в этих органах не изменяется или возрастает незначительно. Наоборот, при падении системного АД гладкие мышцы сосудов расслабляются, что позволяет поддерживать должную объемную скорость регионального кровотока.

Эндотелиальные факторы

Решающее значение в регуляции сосудистого тонуса придается в последние годы так называемым эндотелиальным факторам (рис. 1.38). Было установлено, что сосудистый эндотелий является местом образования целого ряда соединений, участвующих в регуляции сосудистого тонуса, функции тромбоцитов и свертывания крови. В настоящее время выделяют несколько вазодилатирующих и вазоконстрикторных субстанций.

Рис. 1.38. Функция эндотелия.

AI и AII — ангиотензины I и II; A X — ацетилхолин; АПФ — ангиотензин-превращающий фермент; AT 1 — рецепторы к ангиотензину; B 2 — рецепторы к брадикинину; Big ET — «большой» эндотелин; ET 1 — эндотелин I; ET A и ET B — рецепторы к эндотелину; М — мускариновые рецепторы; H 1 — рецепторы к гистамину; NO — оксид азота; P — АДФ-рецепторы; PGI 2 — простациклин; PGH 2 — простагландин H 2 ; TxA 2 — тромбоксан A 2 ; Tx — рецепторы к тромбоксану A 2 ; ЭГПФ — эндотелиальный гиперполяризующий фактор; ЭПФ — эндотелин-превращающий фермент

Вазодилатирующие факторы. Основными эндотелийзависимыми вазодилатирующими факторами, оказывающими влияние на сосудистый тонус и агрегацию тромбоцитов, являются эндотелиальный расслабляющий фактор (оксид азота, NO), простациклин PGI2 и эндотелиальный гиперполяризующий фактор (ЭГПФ).

1. Эндотелиальный расслабляющий фактор (оксид азота, NO), обеспечивает выраженную релаксацию гладких мышц артерий, артериол и вен, а также препятствует адгезии и агрегации тромбоцитов. Оксид азота продуцируется сосудистым эндотелием из L-аргинина спонтанно, а также при стимулировании эндотелиальной клетки рядом биологически активных веществ и медиаторов (ацетилхолин, гистамин, брадикинин, субстанция Р и др.), продукция которых возрастает в том числе при физической нагрузке и увеличении работы сердца. Освободившийся из L-аргинина оксид азота (NO) активирует гуанилатциклазу гладкомышечной клетки с образованием цГМФ, что приводит к ее активному расслаблению

(рис. 1.39).

Рис. 1.39. Синтез окиси азота в эндотелии. Обозначения те же, что и на рис. 1.38. TNF — фактор некроза опухолей; IL 1 — интерлейкин I

2.Простациклин также относится к числу важнейших вазодилататоров, препятствующих вазоконстрикторному эффекту тромбоксана А2 и агрегации тромбоцитов. Простациклин PGI2 является продуктом метаболизма арахидоновой кислоты, освобождающейся стимулированными тромбоцитами, из которой под действием циклооксигеназы синтезируется либо простациклин PGI2, либо тромбоксан А2 (рис. 1.40).

3.Эндотелиальный гиперполяризующий фактор (ЭГПФ), также вырабатываемый эндотелиальными клетками, вызывает гиперполяризацию мембран гладкомышечных клеток (подробнее — см. главу 3) и снижает их чувствительность к разнообразным констрикторным влияниям. Выделение ЭГПФ вызывает открытие калиевых каналов гладкомышечных

клеток, что сопровождается расслаблением сосудов. Характерно, что в отличие от оксида азота, ЭГПФ выделяется эндотелием не постоянно, а только под действием некоторых стимулов (ацетилхолин, брадикинин, тромбин, гистамин, субстанция Р, АДФ, АТФ и др.).

Рис. 1.40. Синтез тромбоксана А 2 и простациклина

Вазоконстрикторные факторы. К числу важнейших эндотелийзависимых вазоконстрикторных субстанций, повышающих сосудистый тонус, агрегацию тромбоцитов и свертываемость крови, относятся эндотелин-1 (ЕТ1), тромбоксан А2, простагландин PGH2, ангиотензин II (АII) и др.

1. Эндотелин-1 (ЕТ1) является наиболее мощным из всех известных вазоконстрикторов. Процесс образования ЕТ1 включает несколько стадий (рис. 1.41). Вначале из предшественника эндотелинов (препроэндотелина) образуется так называемый «большой эндотелин» (проэндотелин), который, в свою очередь, под действием эндотелин-превращающего фермента (ЭПФ) трансформируется в активный полипептид, состоящий из 21 аминокислоты, — эндотелин-1 (ЕТ1). Связываясь со специфическими рецепторами клеточных мембран (ЕТА и ЕТВ), эндотелин-1 повышает внутриклеточную концентрацию ионов Са2+, что ведет к усилению сокращения гладких мышц сосудистой стенки. В физиологических условиях концентрация ЕТ1 в плазме очень мала, что связано, прежде всего, с ингибированием синтеза эндотелина-1 описанными выше вазодилатирующими субстанциями (оксидом азота и простациклином РGI2). Малые количества ЕТ1 активируют образование эндотелиальными клетками этих факторов расслабления (рис. 1.41, левая часть). В более высоких концентрациях ЕТ1 стимулирует рецепторы ЕТА и ЕТВ гладкомышечных клеток, вызывая стойкую и выраженную вазоконстрикцию (рис. 1.41, правая часть). Образование ЕТ1 усиливается при воздействии на эндотелиальные клетки тромбина, вазопрессина, интерлейкина-1, ангиотензина II и других веществ, а также при возникновении гипоксии, повышении АД, ускорении кровотока и т.п.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]