Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Voprosy_DM_TA_36_chasov.doc
Скачиваний:
349
Добавлен:
11.03.2016
Размер:
779.78 Кб
Скачать

17. Кинематика планетарных передач. Инематика.

При исследовании кинематики планетарных передач широко используют метод остановки водила — метод Виллиса. Всей планетарной передаче .мысленно сообщается вращение с частотой вращения водила, но в обратном направлении. При этом водило как бы затормаживается, а все другие звенья освобождаются. Получаем так называемый обращенный механизм (рис. 8.45, β), представляющий собой простую передачу, в которой движение передается οτακί через паразитные колеса g. Частоты вращения зубчатых колес обращенного механизма равны разности прежних частот враще¬ния и частоты вращения водила. В качестве примера проанализируем кинематику передачи, изображенной на рис. 8.45. Условимся приписывать частотам вращения индекс звена (<па, nh и т. д.), а передаточные отношения сопровождать индексами в направлении движения и индексом неподвижного звена. Например, ibah означает передаточное отношение от А к А при неподвижном Ь. Для обращенного механизма

 

 

В планетарных передачах существенное значение имеет знак передаточного отношения. Условимся, что при />0 вращение ведущего и ведомого звеньев происходит в одном направлении; при /<0 вращение противоположное. В рассматриваемом примере колеса а и b вращаются в разных направлениях, а потому ihab<0. Переходя к реальному механизму, у которого в большинстве случаев практики колесо b заторможено, а — ведущее и h — ведомое, на основе формулы (8.74) при пъ = 0 получаем

 

 

Частоту вращения сателлита определим из    равенства

 

 

При заданных па и nh определяют пд или (ng — nh) как частоту вращения сателлита относительно водила или от¬носительно своей оси (используют при расчете подшипников). Далее,

 

 

Для случая, когда неподвижно колесо я, на основе формулы (8.74) при ив = 0 с помощью аналогичных преобразований находим Анализ кинематики планетарных передач, выполненных по другим схемам, производят таким же методом. Силы в зацеплении. Из рис. 8.46 ясно, что, по условиям равновесия сателлита,Здесь С—число сателлитов; Кс — коэф¬фициент, учитывающий неравномерность распределения нагрузки между сателлитами. Радиальные и осевые нагрузки при из¬вестной окружной силе определяют так же, как и в простых передачах

18. Условия подбора чисел зубьев планетарных передач.

Подбор чисел зубьев планетарной передачи основывается на трех условиях: 1) Условие соосности, по которому межосевые расстояния зубчатых пар с внешним и внутренним зацеплением должны быть равны. При этом число зубьев центральной шестерни задают из условия неподрезания ножки зуба, а число зубьев внешнего колеса – по заданному передаточному отношению. 2) Условие сборки - во всех зацеплениях центральных колес с сателлитами имело место совпадение зубьев со впадинами, иначе собрать передачу невозможно. 3) Условие соседства – сателлиты при вращении не должны задевать друг друга зубьями. 

19. Основные сведения о волновых передачах.

Кинематически эти передачи представляют собой разновидность плане­тарной передачи с одним гибким зубчатым колесом. На рис. 3.61 изображе­ны основные элементы волновой передачи: неподвижное колесо 7 с внут­ренними зубьями, вращающееся упругое колесо с наружными зубьями и водило h. Неподвижное колесо закрепляется в корпусе и выполняется в виде обычного зубчатого колеса с внутренним зацеплением. Гибкое зубча­тое колесо имеет форму стакана с легко деформирующейся тонкой стенкой: в утолщенной части (левой) нарезаются зубья, правая часть имеет форму вала. Водило состоит из овального кулачка и специального подшипника.

Рис. 3.61. Волновая передача

 

Гибкое колесо деформируется так, что по оси овала I—I зубья зацепля­ются на полную рабочую высоту; по оси II—II зубья не зацепляются.

Передача движения осуществляется за счет деформирования зубчатого венца гибкого колеса. При вращении водила волна деформации бежит по окружности гибкого зубчатого венца; при этом венец обкатывается по не­подвижному жесткому колесу в обратном направлении, вращая стакан и вал. Поэтому передача и называется волновой, а водило — волновым генератором.

При вращении водила овальной формы образуются две волны. Такую передачу называют двухволновой. Бывают трехволновые передачи, на рис. 3.62 показана схема такой передачи.

Рис. 3.62. Трехволновая передача

 

3.93. Достоинство и недостатки волновых передач.

Волновые передачи обладают большой нагрузочной способностью (в за­цеплении находится большое число пар — зубьев) и высоким передаточным числом (/ 300 для одной ступени) при сравнительно малых габаритах. Это основные достоинства этих передач. Передача может работать, находясь в герметизированном корпусе, что очень важно для использования волновых передач в химической, авиационной и других отраслях техники.

Недостатки волновой передачи: сложность изготовления гибкого колеса и волнового генератора; возможность использования этих передач только при сравнительно невысокой угловой скорости вала генератора.