Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
англ.яз для 1 гр.doc
Скачиваний:
35
Добавлен:
05.03.2016
Размер:
211.97 Кб
Скачать

2. Read the text and do the tasks that follow it.

MECHANICAL PROPERTIES OF MATERIALS

Materials Science and Technology is the study of ma­terials and how they can be fabricated to meet the needs of modern technology. Using the laboratory techniques and knowledge of physics, chemistry, and metallurgy, scientists are finding new ways of using metals, plastics and other materials.

Engineers must know how materials respond to exter­nal forces, such as tension, compression, torsion, bend­ing, and shear. All materials respond to these forces by elastic deformation. That is, the materials return their original size and form when the external force disap­pears. The materials may also have permanent deforma­tion or they may fracture. The results of external forces are creep and fatigue.

Compression is a pressure causing a decrease in vol­ume. When a material is subjected to a bending, shear­ing, or torsion (twisting) force, both tensile and comp-ressive forces are simultaneously at work. When a metal bar is bent, one side of it is stretched and subjected to a tensional force, and the other side is compressed.

Tension is a pulling force; for example, the force in a cable holding a weight. Under tension, a material usu­ally stretches, returning to its original length if the force does not exceed the material's elastic limit. Under larger tensions, the material does not return completely to its original condition, and under greater forces the mate­rial ruptures.

Fatigue is the growth of cracks under stress. It oc­curs when a mechanical part is subjected to a repeated or cyclic stress, such as vibration. liven when the maximum stress never exceeds the elastic limit, failure of the ma­terial can occur even after a short time. No deformation is seen during fatigue, but small localised cracks develop and propagate through the material until the remain­ing cross-sectional area cannot support the maximum stress of the cyclic force. Knowledge of tensile stress, elastic limits, and the resistance of materials to creep and fatigue are of basic importance in engineering.

Creep is a slow, permanent deformation that results from a steady force acting on a material. Materials at high temperatures usually suffer from this deformation. The gradual loosening of bolts and the deformation of components of machines and engines are all the exam­ples of creep. In many cases the slow deformation stops because deformation eliminates the force causing the creep. Creep extended over a long time finally leads to the rupture of the material.

Vocabulary

bar — брусок, прут

completely — полностью, совершенно

compression — сжатие

creep — ползучесть

cross-sectional area—площадь поперечного сечения

cyclic stress — циклическое напряжение

decrease — уменьшение

elastic deformation — упругая деформация

elastic limit — предел упругости

exceed — превышать

external forces — внешние силы

fatigue — усталость металла

fracture

— перелом, излом

loosen — ослаблять, расшатывать

permanent deformation — постоянная деформация

remaining — оставшийся

shear — срез

simultaneously — одновременно

to stretch — растягивать

technique —методы

tension — напряженность

to propagate — распространять(ся)

to bend — гнуть, согнуть

to extend — расширять, продолжаться

to meet the needs — отвечать требованиям

to occur — происходить

to respond — отвечать реагировать

to suffer — страдать

torsion — кручение

twisting — закручивание, изгиб

volume — объем, количество

rupture — разрыв

Answer these questions

  1. What are the external forces causing the elastic deformation of materials? Describe those foeces that change the form and size of materials.

  1. What are the results of external forces?

  1. What kinds of deformation are the combinations of tension and compression

  2. What is the result of tension? What happens if the elastic limit of material is exceeded under tension? 5. What do we call fatigue? When does it occur? What are the results of fatigue?

6. What do we call creep? When does this type of per­manent deformation take place? What are the results of creep?

Find the following in the text:

  1. отвечать требованиям современной технологии

  2. используя лабораторные методы

  3. новые способы использования металлов

  4. сжатие, растяжение, изгиб, кручение, срез.

  5. возвращать первоначальный размер и форму

  6. внешняя сила

  7. постоянная деформация

  8. уменьшение объема

  9. растягивающие и сжимающие силы

  1. превышать предел упругости материала

  2. повторяющиеся циклические напряжения

  3. разрушение материала

  4. развитие и распространение мелких трещин

  5. сопротивление материалов ползучести и устало­ сти

Translate into English the following sentences:

  1. Упругая деформация — это реакция всех мате­риалов на внешние силы, такие как растяжение, сжатие, скручивание, изгиб и срез.

  2. Усталость и ползучесть материалов являются результатом внешних сил

  3. Внешние силы вызывают постоянную деформацию и разрушение материала

  4. Растягивающие и сжимающие силы работают одновременно, когда мы изгибаем или скручиваем материал 5. Растяжение материала выше предела его упру­гости дает постоянную деформацию или разрушение

  1. Когда деталь работает долгое время под цикли­ческими напряжениями в ней появляются небольшиерастущие трещины из-за усталости металла

  2. Ползучесть — это медленное изменение размера детали под напряжением

3. Read the text and do the tasks that follow it.

Plastics |

Plastics are non-metallic, synthetic, carbon-based materials. They can be moulded , shaped, or extruded into flexible sheets, films, or fibres. Plastics are synthetic polymers. Polymers consist of long-chain mole­cules made of large numbers of identical small molecules (monomers). The chemical nature of a plastic is defined by the monomer (repeating unit) that makes up the chain of the polymer. Polyethene is a polyolefin; its monomer unit is ethene (formerly called ethylene). Other catego­ries are acrylics (such as polymethylmethacrylate), styrenes (such as polystyrene), vinys (such as polyvinyl chloride (PVC) , polyes­ters, polyurethanes, polyamides (such as nylons), polyethers, acetals, phenolics, cellulosics, and amino resins. The molecules can be either natural — like cellulose, wax, and natural rubber — or synthetic — in polyethene and nylon. In co-polymers, more than one monomer is used.

The giant molecules of which polymers consist may be linear, branched, or cross-linked, depending on the

plastic. Linear and branched molecules are thermoplas­tic (soften when heated), whereas cross-linked molecules are thermosetting (harden when heated).

Most plastics are synthesized from organic chemicals or from natural gas or coal. Plastics are light-weight com­pared to metals and are good electrical insulators. The best insulators now are epoxy resins and teflon. Teflon or polytetraf luoroethene (PTFE) was first made in 1938 and was produced commercially in 1950.

Plastics can be classified into several broad types.

1. Thermoplastics soften on heating, then harden again when cooled. Thermoplastic molecules ['m3likju:lz] are also coiled and because of this they are flexible and easily stretched.

Typical example of thermoplastics is polystyrene [poli'stairun]. Polystyrene resins are characterized by high resistance to chemical and mechanical stresses at low temperatures and by very low absorption of water. These properties make the polystyrenes especially suit­able for radio-frequency insulation and for parts used at low temperatures in refrigerators and in airplanes. PET (polyethene terephthalate) is a transparent thermoplas­tic used for soft-drinks bottles. Thermoplastics are also viscoelastic, that is, they flow (creep) under stress. Ex­amples are polythene, polystyrene and PVC.

2. Thermosetting plastics (thermosets) do not soften when heated, and with strong heating they decompose. In most thermosets final cross-linking, which fixes the molecules, takes place after the plastic has already been formed.

Thermosetting plastics have a higher density than thermoplastics. They are less flexible, more difficult to stretch, and are less subjected to creep. Examples of ther­mosetting plastics include urea-formaldehyde

or polyurethane and epoxy resins, most polyesters, and phenolic polymers such as phenol-formaldehyde resin.

3. Elastomers are similar to thermoplastics but have sufficient cross-linking between molecules to prevent stretching and creep.