Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
электродинам ответы печать.doc
Скачиваний:
138
Добавлен:
03.03.2016
Размер:
42.28 Mб
Скачать

5. Связь между напряженностью электрического поля и потенциалом.

Для установления связи между силовой характеристикой электрического поля -напряжённостью и его энергетической характеристикой - потенциаломрассмотрим элементарную работу сил электрического поля на бесконечно малом перемещении точечного заряда q: dA = q dl, эта же работа равна убыли потенциальной энергии заряда q: dA = - dWп - d, где d - изменение потенциала электрического поля на длине перемещения dl. Приравнивая правые части выражений, получаем: dl = -d или в декартовой системе координат

Ex dx + Ey dy + Ez dz = -d,      (1.8)

где Ex, Ey, Ez - проекции вектора напряженности на оси системы координат. Поскольку выражение (1.8) представляет собой полный дифференциал, то для проекций вектора напряженности имеем

откуда 

 .

Стоящее в скобках выражение является градиентом потенциала j, т. е.

E = - grad  = -Ñ.

Напряжённость в какой-либо точке электрического поля равна градиенту потенциала в этой точке, взятому с обратным знаком. Знак «минус» указывает, что напряженность направлена в сторону убывания потенциала.

Рассмотрим электрическое поле, создаваемое положительным точечным зарядом q (рис. 1.6). Потенциал поля в точке М, положение которой определяется радиус-вектором r, равен  = q / 4pe0er. Направление радиус-вектора r совпадает с направлением вектора напряженности E, а градиент потенциала направлен в противоположную сторону. Проекция градиента на направление радиус-вектора

 .

Проекция же градиента потенциала на направление вектора t, перпендикулярного вектору r, равна

 ,

т. е. в этом направлении потенциал электрического поля является постоянной величиной ( = const).

В рассмотренном случае направление вектора r совпадает с направлениемрис. 1.6

силовых линий. Обобщая полученный результат, можно утверждать, что во всех точках кривой, ортогональной к силовым линиям, потенциал электрического поля одинаков. Геометрическим местом точек с одинаковым потенциалом является эквипотенциальная поверхность, ортогональная к силовым линиям.

 рис. 1.7

При графическом изображении электрических полей часто используют эквипотенциальные поверхности. Обычно эквипотенциали проводят таким образом, чтобы разность потенциалов между любыми двумя эквипотенциальными поверхностями была одинакова. На рис. 1.7 приведена двухмерная картина электрического поля. Силовые линии показаны сплошными линиями, эквипотенциали - штриховыми.

Подобное изображение позволяет сказать, в какую сторону направлен вектор напряжённости электрического поля; где напряжённость больше, где меньше; куда начнёт двигаться электрический заряд, помещённый в ту или иную точку поля. Так как все точки эквипотенциальной поверхности находятся при одинаковом потенциале, то перемещение заряда вдоль нее не требует работы. Это значит, что сила, действующая на заряд, все время перпендикулярна перемещению.

6. Полярные и неполярные молекулы.

Диэлектриками называются вещества, которые в обычных условиях практически не проводят электрический ток, их удельное сопротивление в раз больше, чем у металлов. Согласно представлениям классической физики, в диэлектриках, в отличие от проводников, нет свободных носителей заряда, которые могли бы под действием электрического поля создавать ток проводимости.К диэлектрикам относятся все газы; некоторые жидкости (дистиллированная вода, масла, бензол); твердые тела (стекло, фарфор, слюда). Термины "диэлектрик" и "диэлектрическая постоянная" были введены в науку в 1837 г. M. Фарадеем.Диэлектрики, как и любые вещества, состоят из атомов и молекул. В целом молекулы нейтральны, тем не менее, они взаимодействуют с электрическим полем. Например, в случае, когда симметрия молекулы отлична отсферической, ее можно представить в виде электрического диполяЭлектрический дипольный момент молекулы , где q - суммарный заряд ядер или электронов; l - вектор, представляющий собой плечо эквивалентного диполя.Молекулы, обладающие электрическим дипольным моментом, называют полярными. Полярным диэлектриком является вода; следующие вещества: CO; N2O; S2O; NH; HCl также имеют в своем составе полярные молекулы. В объеме вещества дипольные моменты молекул распределены по разным направлениям хаотическим образом, так что их сумма равна нулю .Молекулы, у которых положения эквивалентного положительного и эквивалентного отрицательного заряда совпадают и, следовательно, дипольный момент каждой молекулы равен нулю ( ), называют неполярными. Такие вещества, как состоят из неполярных молекул.Если диэлектрик внести в электрическое поле, то это поле и сам диэлектрик претерпевают существенные изменения