Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
электродинам ответы печать.doc
Скачиваний:
138
Добавлен:
03.03.2016
Размер:
42.28 Mб
Скачать

16. Электродвижущая сила.

Смещение под действием электрического поля зарядов в проводнике всегда происходит таким образом, что электрическое поле в проводнике исчезает и ток прекращается. Для протекания тока в течение продолжительного времени на заряды в электрической цепи должны действовать силы, отличные по природе от сил электростатического поля, такие силы получили название сторонних сил.Эти силы могут быть обусловлены химическими процессами, диффузией носителей тока в неоднородной среде, электрическими (но не электростатическими) полями, порождаемыми переменными во времени магнитными полями, и т. д. Всякое устройство, в котором возникают сторонние силы, называется источником электрического тока.Сторонние силы характеризуют работой, которую они совершают над перемещаемыми по электрической цепи носителями заряда. 

Величина, равная работе сторонних сил по перемещению единичного положительного заряда, называется электродвижущей силой (ЭДС, действующей в электрической цепи или на ее участке.

Представим стороннюю силу , действующую на заряд q, в виде

,

где векторная величина  представляет напряженность поля сторонних сил. Тогда на участке цепи ЭДС равна

Интеграл, вычисленный для замкнутой цепи, дает ЭДС, действующую в этой цепи,

.

Последнее выражение дает самое общее определение ЭДС и пригодно для любых случаев. Если известно, какие силы вызывают движение зарядов в данном источнике, то всегда можно найти напряженность поля сторонних сил и вычислить ЭДС источника. Физическая природа электродвижущих сил в разных источниках весьма различна. 

Рассмотрим пример. Пусть имеется металлический диск радиуса R (рис. 4.2), вращающийся с угловой скоростью . Диск включен в электрическую цепь при помощи скользящих контактов, касающихся оси диска и его окружности. Центростремительная сила, гдеm - масса электрона; r - расстояние от оси диска. Эта сила действует на электрон и поэтому , возникающая ЭДС равна

.

17. Закон ома.

Немецкий физик Г. Ом экспериментально установил закон, согласно которому сила тока, текущего по однородному (отсутствуют сторонние силы)металлическому проводнику, пропорциональна падению напряжения на проводнике:

.

Сопротивление проводника. Величина R называется электрическим сопротивлением проводника. Единица сопротивления - 1 Ом. Для однородного цилиндрического проводника

где l - длина проводника; - площадь его поперечного сечения;  - зависящий от свойств материала коэффициент, называемый удельным электрическим сопротивлением. В системе СИ единица измерения  есть .Дифференциальная форма закона Ома. Найдем связь между плотностью тока j и напряженностью поля Е в одной и той же точке проводника. В изотропном проводнике упорядоченное движение носителей тока происходит в направлении вектора Е. Поэтому направления векторов j и Е совпадают.Рассмотрим в однородной изотропной среде элементарный объем с образующими, параллельными вектору Е, длиной , ограниченной двумя эквипотенциальными сечениями 1 и 2 (рис. 4.3).

Обозначим их потенциалы  и , а среднюю площадь сечения через. Используя закон Ома, получим для тока, или для плотности тока, следовательно

.

Перейдем к пределу при , тогда рассматриваемый объем можно считать цилиндрическим, а поле внутри него однородным, так что

,

где Е - напряженность электрического поля внутри проводника. Учитывая, что j и Есовпадают по направлению, получаем

.

Это соотношение является дифференциальной формой закона Ома для однородного участка цепи. Величина  называется удельной проводимостью.На неоднородном участке цепи на носители тока действуют, кроме электростатических сил , еще и сторонние силы, следовательно, плотность тока в этих участках оказывается пропорциональной сумме напряженностей. Учет этого приводит кдифференциальной форме закон Ома для неоднородного участка цепи.

.

От закона Ома в дифференциальной форме легко перейти к интегральной форме. Рассмотрим неоднородный участок цепи. Внутри этого участка выберем контур тока, удовлетворяющий следующим условиям: в каждом сечении, перпендикулярном к контуру, величины  имеют с достаточной точностью одинаковые значения; векторы  в каждой точке направлены по касательной к контуру.Вследствие закона сохранения заряда сила постоянного тока в каждом сечении должна быть одинаковой. Поэтому величина  постоянна вдоль контура. Тогда, заменяя j отношением , получаем

.

Умножим это соотношение на dl и проинтегрируем вдоль контура:

,

где  представляет собой суммарное сопротивление участка цепи, первый интеграл в правой части - разность потенциалов  на концах участка, а второй интеграл определяет ЭДС , действующую на участке цепи. Таким образом.ЭДС , как и сила тока I, величина алгебраическая. В случае, когда ЭДС способствует движению положительных носителей тока в выбранном направлении (в направлении 1-2), . Если ЭДС препятствует движению положительных носителей в данном направлении, то:

.

Последняя формула выражает закон Ома для неоднородного участка цепи. Для замкнутой цепи закон Ома имеет вид

,

где R - сопротивление нагрузки, r - внутреннее сопротивление источника тока.