Скачиваний:
146
Добавлен:
02.03.2016
Размер:
6.67 Mб
Скачать

ного поглощающего комплекса фосфогипсом и внесения с мелиорантом ценных питательных биогенных элементов – фосфора, калия и др. Единственным ограничивающим условием применимости этого безусловно прогрессивного и практически доступного метода утилизации полужидких отходов бурения является состав ОБР, который не должен содержать вредных и токсичных для почв и экологической цепи в целом компонентов.

Наиболее прогрессивным направлением утилизации ОБР является их использование в качестве исходного сырья для получения изделий грубой строительной керамики, в частности, в производстве керамзита и глинистого кирпича. Предпосылкой этого служит компонентный состав ОБР, основу которого составляет глина, являющаяся главным компонентом бурового раствора и находящаяся в высокодисперсном состоянии. Причем глинистая фракция ОБР представлена в подавляющем большинстве случаев глиной высокого качества (бентопорошок), что придает такому сырью хорошие технологические свойства. Кроме того, в составе ОБР содержится значи- тельное количество органики и нефти.

Наличие органики и нефти обеспечивает высокий эффект вспучивания глинистой массы при обжиге.

Исследованиями показана не только принципиальная возможность получения из ОБР керамзита, но и реальность осуществления его производства на действующих заводах без изменения существующей технологии.

Весьма интересные результаты получены при оценке возможности использования ОБР для производства строительного кирпича. Исследования проводили по стандартной методике, принятой для изделий грубой строительной керамики. Для этого в исходную глинистую сырьевую смесь вводили различные количества ОБР и определяли реологические свойства шихты и свойства керамического изделия.

Результаты экспериментов показывают, что введение в традиционную сырьевую смесь для производства глиняного кирпича ОБР в количестве до 25 % не только не ухудшает показатели качества получаемого керамического изделия, но и существенно улучшает реологические свойства исходной шихты. При этом повышается формовочная влажность массы, ее пластиче- ская вязкость, а показатель предельного напряжения сдвига находится в оптимальном диапазоне. Такое действие добавок ОБР повышает формовоч- ную способность состава и облегчает выполнение технологических операций по переработке сырья в керамическую массу. Получаемый кирпич обладает высокими потребительскими свойствами – он характеризуется минимальной усадкой, незначительным водопоглощением и высокими проч- ностными показателями. Уменьшение усадки кирпича происходит за счет слабовспучивающего эффекта ОБР при обжиге такой сырьевой смеси. Уменьшение водопоглощения кирпича обусловлено в первую очередь структурой вводимого ОБР и наличием в его составе высококоллоидальной глинистой фракции и структуроообразующей органики, придающей сырью и готовому изделию определенные гидрофобные свойства. Использование глинистой массы с большим содержанием высококоллоидальных глинистых частиц придает сырьевой смеси однородную структуру, что в конечном счете ведет к получению керамического изделия с более мелкими и однородными по размеру порами. В результате этого водопоглощение кирпича заметно уменьшается. Повышение прочности кирпича обусловлено также наличием в составе ОБР высококоллоидальной глинистой фракции, что при обжиге позволяет получить высокопрочную структуру изделия.

155

Результаты промышленного испытания данного метода утилизации ОБР показали, что на практике все подготовительные и основные операции производства глинистого строительного кирпича с использованием отработанных буровых растворов в качестве добавок к исходной глинистой шихте осуществляются в рамках традиционно применяемой технологии и не требуют их корректировки или создания специального дополнительного оборудования.

Указанное направление утилизации отходов бурения является наиболее эффективным способом решения не только проблемы охраны окружающей среды, но и проблемы ресурсосбережения, так как позволяет вовлечь в активное использование вторичные ресурсы. Такое природоохранное мероприятие обеспечивает не только экологический, но и экономиче- ский эффект за счет придания отходам бурения новых потребительских свойств и возможности их использования для различных нужд. Этому направлению утилизации отходов должен быть отдан приоритет перед другими областями утилизации ввиду очевидной важности решаемых при этом задач. Успешное же решение этой проблемы во многом будет зависеть от организации специальных производств, максимально приближенных к районам массового бурения скважин, что сделает экономически целесообразным и рентабельным реализацию на практике этого важного природоохранного и ресурсосберегающего мероприятия.

Одним из интересных направлений утилизации ОБР и БШ является их использование в дорожном строительстве. Однако перспективность этого метода и его экономическая состоятельность еще не доказаны, так как рекомендуется использовать ОБР, содержащий в своем составе, судя по анализу полученных данных, как безвредные, так и токсичные компоненты. Только после проведения всесторонних исследований в этой области может быть сделан окончательный вывод о практической полезности и экологиче- ской чистоте этого метода.

Несмотря на очевидные преимущества утилизации отходов бурения, самым доступным является их ликвидация путем захоронения. При этом практикуется захоронение ОБР и БШ в специально отведенных местах, в глубокозалегающих подземных горизонтах, в земляных амбарах непосредственно на территории буровой.

Захоронение отходов бурения в специально отведенных местах предусматривает использование для этих целей шламохранилищ, бросовых земель или оставшихся после разработки карьеров. Такое захоронение сопряжено со значительными транспортными расходами и поэтому экономи- чески невыгодно. Вместе с тем захоронение отходов по этому способу является единственно возможным вариантом решения природоохранной проблемы, например, при морском бурении, бурении в курортных и прибрежных водоохранных зонах, а также в экологически уязвимой местности.

Недостаточно распространен и метод захоронения жидких отходов, преимущественно ОБР, в глубокозалегающие подземные горизонты. Он может быть реализован только при наличии в разрезе разбуриваемого месторождения соответствующих геологических условий, обеспечивающих безопасное захоронение таких отходов. Необходимым и обязательным условием при этом является наличие хорошо экранированных водонепроницаемых пластов с высокими емкостными свойствами, не имеющих гидродинамической связи с другими горизонтами. Кроме того, экономически

156

целесообразно захоронение лишь в случае больших объемов закачки отходов, например, при кустовом бурении.

В настоящее время в большинстве случаев практикуется захоронение полужидкой массы и нетекучего осадка непосредственно в шламовых амбарах на территории буровой после предварительного подсыхания их содержимого. Однако такое захоронение не предотвращает загрязнения природной среды, так как содержащиеся в отходах загрязнители вследствие подвижности и высокой проникающей способности мигрируют в почвогрунты, вызывая в них негативные процессы.

Представляется неэкономичным и способ захоронения ОБР и БШ в специально отведенных местах. В качестве шламохранилищ могут использоваться бросовые земли, исключенные из землепользования, карьеры после прекращения их разработки, а также специально сооружаемые и оборудуемые хранилища. Существенным недостатком указанного метода являются значительные транспортные расходы на вывоз ОБР со скважин, так как такие места захоронения находятся зачастую на большом удалении от буровых. К тому же не всегда удается выбрать подходящее место, отве- чающее требованиям безопасного захоронения указанных отходов.

В американской практике бурения известен и практикуется метод захоронения ОБР в земляных амбарах, стенки которых изолируются пленкой из полиэтилена или поливинилхлорида и бентонитом. После заполнения амбара буровым раствором его засыпают минеральным грунтом, смешанным с бентонитом, наносят слой плодородной почвы и рекультивируют. Однако у нас в стране такой метод не получил должного распространения, хотя и заслуживает внимания.

Известен и нашел частичное применение в зарубежной практике и метод разбрызгивания ОБР на пахотные земли после предварительной его нейтрализации. Однако использование указанного метода ограничивается типом и системой обработки бурового раствора. Этот метод не приемлем для минерализованных буровых растворов, т.е. растворов с высоким содержанием хлоридов и других токсичных солевых компонентов. Но отсутствие в литературе сведений о нейтрализующих агентах не позволяет дать объективную оценку возможностей метода, а также практической и экономической целесообразности его применения.

Анализ данной проблемы свидетельствует о том, что захоронение отходов бурения не решает полностью задачи защиты окружающей среды от загрязнения. Этот доступный и практически повсеместно используемый метод локализации отходов бурения является экологически оправданным лишь при условии обезвреживания захороняемой массы.

6.9. МЕТОДЫ ОБЕЗВРЕЖИВАНИЯ ОТРАБОТАННЫХ БУРОВЫХ РАСТВОРОВ И ШЛАМА

В настоящее время в подавляющем большинстве случаев ОБР и БШ захороняются в земляных амбарах непосредственно на территории буровой после окончания бурения скважины. Это решение не обеспечивает надежной экологической защиты мест захоронения отходов. Положение еще более усугубляется тем, что такой метод требует длительного времени подсыхания содержимого амбаров перед их засыпкой с последующей рекультивацией, а это невыгодно в плане рационального использования зе-

157

мель. Вместе с тем этот метод ликвидации отходов бурения наиболее доступен по сравнению с другими, несмотря на безвозвратные потери бурового раствора. Обезвреживание же отходов позволяет не только повысить экологичность таких работ, но и обеспечить благоприятные условия для своевременной рекультивации отстойников с ОБР и БШ, исключив стадию длительного ожидания затвердевания их содержимого.

Основные направления работ в области обезвреживания отходов бурения концентрируются на физико-химической нейтрализации и отверждении ОБР и БШ. Физико-химическая нейтрализация содержимого шламовых амбаров представляется привлекательным методом предотвращения загрязнения объектов природной среды отходами бурения. Один из них предусматривает разделение ОБР на жидкую и твердые фазы с последующей утилизацией жидкой части и нейтрализацией осадка. С этой целью в США предложен способ разделения фаз ОБР. Для обработки используют флокулирующие добавки. Такие добавки вызывают коагуляцию и флокуляцию жидкой части отходов и высаждение твердой фазы в осадок. После удаления из амбара осветленной воды оставшаяся масса вновь обрабатывается флокулянтом, и так продолжается до тех пор, пока вся основная часть воды не будет удалена из жидких отходов.

Наиболее перспективным представляется использование передвижных блочных установок для обработки отходов бурения. Они состоят из блока двигателя, приемной емкости с мешалкой для хранения бурового раствора, погружного насоса, электроприводного устройства для перекачки дегидратированного бурового раствора и, в случае необходимости, дополнительного узла для физико-химической обработки воды. Производительность установки составляет до 10 м3/ч. Имеются и другие разработки, обеспечивающие глубокое обезвреживание отходов бурения.

Заслуживает внимания способ ликвидации шламовых амбаров методом расслоения ОБР на загущенную и осветленные фазы с последующим отверждением верхней части осадка после удаления осветленной воды. Он реализуется следующим образом. В амбар с ОБР вводят коагулянт из рас- чета 1,5 кг на 1 м3 жидкой фазы. Указанный амбар содержит примерно 50 % шлама и 50 % жидкой фазы. Введение коагулянта осуществляется при активном смешении его с ОБР с помощью цементировочного агрегата в течение 1,5–2,0 ч. Затем ОБР отстаивается в течение суток. После отстоя осветленную воду откачивают на технологические нужды. Подвижную часть загущенного осадка буровым насосом откачивают из амбара и смешивают с вяжущим компонентом, например, с цементом из расчета 0,8 т на 1 м3 подвижной части загущенного осадка. Полученную смесь вводят в

амбар и равномерно распределяют по поверхности придонной неподвижной части загущенного осадка. Отверждение поверхностного слоя загущенного осадка заканчивается через 2 сут. На отвержденную поверхность наносится экран из глины толщиной 0,3 м. Затем оставшуюся часть котлована засыпают минеральным грунтом.

Предложенный способ пока не имеет достаточной реализации в промысловых условиях, что не позволяет судить о его рациональности. К тому же значителен расход вяжущего.

Одним из эффективных методов обезвреживания бурового шлама является окисление и гидрофобизация его поверхности. Значительный объем работ в этом направлении выполнен Т.И. Гусейновым, А.А. Мовсумовым и другими специалистами. Ими изучены закономерности и особенности про-

158

цессов окисления и гидрофобизации поверхности бурового шлама и установлены наиболее целесообразные границы применимости данных методов в соответствии с уровнем загрязненности таких отходов бурения. Как показали исследования, метод окисления органических загрязнителей, содержащихся в буровом шламе, обладает гораздо меньшей эффективностью по сравнению с гидрофобизацией. Это одна из основных причин, не позволяющая рекомендовать метод окисления в практику обезвреживания буровых шламов. Более перспективным, по мнению исследователей, является обезвреживание шлама методом гидрофобизации его поверхности с помощью органических или растворимых высокомолекулярных соединений с последующим действием электролитов. За счет высаливания полимера частицы породы покрываются пленкой, препятствующей растворению в воде токсичных и загрязняющих веществ. Из известных растворов полимеров наибольшей эффективностью обладает сополимер малеинового ангидрида с акриламидом, который позволяет получать высокую степень гидрофобизации поверхности бурового шлама и, как следствие, обеспечи- вает необходимую глубину обезвреживания. Этот метод рекомендован в основном для обезвреживания шлама при морском бурении, так как эффект гидрофобизации поверхности усиливается при попадании обработанного таким полимером БШ в морскую среду. Однако из-за зна- чительных расходов гидрофобизующего агента и его дефицитности этот метод широкого распространения в практике буровых работ не получил.

В качестве безреагентных методов обезвреживания твердых отходов заслуживает внимания термический метод. Термическая обработка шламовых масс обеспечивает разрушение органики всех основных классов, присутствующих в буровом шламе. По мнению ряда исследователей, этот метод является наиболее доступным и перспективным. Его практическая реализация осуществляется в печах специальной конструкции, из которых заслуживает внимания барабанная электрическая печь, разработанная в ГИПРОморнефти под руководством Т.И. Гусейнова. Она позволяет реализовать необходимые термические режимы для достижения глубокого обезвреживания шламовых масс с высоким содержанием нефти и нефтепродуктов и других загрязнителей органической природы. Основным недостатком этого метода, сдерживающим его широкую практическую реализацию, является значительный расход электроэнергии на проведение обжига шлама.

Эффективным и практически доступным методом частичного обезвреживания бурового шлама может стать отмывка его от загрязняющей органики (в том числе нефти и нефтепродуктов).

Приоритетным направлением обезвреживания отходов бурения является их отверждение. Обезвреживающий эффект при этом достигается за счет превращения указанных отходов бурения в инертную консолидированную массу и связывания в ее структуре загрязняющих веществ, что практически исключает миграцию их за пределы отвержденного бурового раствора. Такую отвержденную массу можно захоронить в земляных амбарах непосредственно на территории буровой без нанесения ущерба окружающей среде. Ввод в ОБР активирующих добавок позволяет, кроме того, получать отвержденную массу, выдерживающую нагрузку, которую создает транспортная техника. При этом значительно упрощается процесс захоронения, облегчаются последующие планировка и рекультивация амбаров,

159

а также существенно сокращаются сроки возврата земель основному землепользователю.

Метод отверждения является не только практически доступным, но и экономически выгодным. Об этом свидетельствуют и примерные расчеты сравнительной экономической эффективности использования известных методов обезвреживания и утилизации указанных отходов бурения. Так, средние затраты на 1 м3 ОБР при его повторном использовании, захоронении в земляных амбарах на территории буровой без предварительного обезвреживания, захоронении с обезвреживанием методом отверждения, подземном захоронении через специальное поглощение скважины глубиной до 700 м и получении глинопорошков из ОБР в распылительных сушилках составляют в ценах 1985 г. соответственно 5–10, 20–37, 10–15, 17–22 и 14–35 руб. Эти расчеты хорошо согласуются с данными исследователей Американского агентства охраны окружающей среды, которыми показано, что стоимость обработки 1 т отходов отверждающим составом составляет в среднем от 22 до 30 дол.

Следовательно, метод обезвреживания ОБР с последующим захоронением продуктов отверждения на территории буровой является более выгодным по сравнению с другими методами не только с экологической, но и с технико-экономической точки зрения.

За рубежом в качестве отверждающих составов предлагаются минеральные вяжущие с активными добавками, такими, как окись алюминия, жидкое стекло, хлорид железа. Эти составы в большинстве случаев многокомпонентны, расход их при добавлении в ОБР относительно высок, к тому же практически отсутствуют данные об их промысловой реализации.

Японскими специалистами для отверждения бурового шлама предложен состав, состоящий из портландцемента, безводного гипса и добавок порошкообразного материала некоторых солей. Фирма «Chemfix Crossford Pollution Services» (Великобритания) рекомендует обрабатывать буровой шлам некоторыми растворами силикатов в присутствии коагулянтов. Полу- чаемый при этом твердый материал может быть утилизирован, т.е. использован для покрытия автостоянок или же безвредно сброшен на поверхность почвы.

Расход вяжущего и сроки твердения ОБР и БШ сокращаются в случае применения в качестве активирующей добавки полимерных материалов. При этом формируется эластичная консолидированная масса, загрязняющие свойства которой значительно ниже загрязняющих свойств исходного ОБР и БШ; нефть и нефтепродукты, как основной загрязнитель природной среды, не мигрируют за пределы отвержденной массы. Вместе с тем водоустойчивость такой полимерглинистой композиции гораздо ниже, чем на основе только минерального вяжущего.

Ряд исследователей предлагают применять для отверждения указанных отходов бурения фенолформальдегидные смолы. При этом получены положительные результаты по консолидации, однако необходимого обезвреживающего эффекта не достигается. К тому же одна из составляющих этого материала (фенол) является крайне токсичным веществом, относящимся ко второй группе токсичности. Все это не дает основания рекомендовать такие отверждающие составы для обезвреживания ОБР и БШ.

Все разрабатываемые отверждающие составы имели одну единственную цель – придать отвержденной массе ОБР и БШ прочностные характеристики. Однако оценка экологичности отвержденных масс в целом не

160

проводилась. Для этого были проведены исследования, результатом которых явились установление закономерностей и особенностей процесса, а также разработка подхода к выбору типа и состава консолиданта.

7

ГЛАВА

ОСЛОЖНЕНИЯ ПРИ БУРЕНИИ, ИХ ПРЕДУПРЕЖДЕНИЕ И БОРЬБА С НИМИ

7.1. КЛАССИФИКАЦИЯ ОСЛОЖНЕНИЙ

Наиболее распространенными осложнениями при бурении скважин являются: разрушение стенок скважины; поглощения буровых промывочных и тампонажных растворов; пластовые флюидопроявления; прихваты колонн бурильных и обсадных труб.

Названные типы осложнений можно подразделить на следующие виды.

Разрушение стенок скважины:

осыпи и обвалы незакрепленных горных пород, приводящие к чрезмерному загрязнению ствола скважины;

набухание горных пород, приводящее к сужению ствола скважины; оползни, приводящие к частичному или полному перекрытию ствола

скважины; желобообразование в местах резкого искривления ствола, приводящее

к возникновению затяжек и посадок при спуске или подъеме колонны труб;

растворение соленосных отложений, приводящее к образованию каверн;

растепление многолетнемерзлых пород, приводящее к их деградации и потере устойчивости.

Поглощения бурового промывочного и тампонажного растворов: потери бурового раствора в проницаемые пласты, приводящие к не-

обходимости приготовления дополнительных объемов бурового раствора, а зачастую и проведения специальных глубинных гидродинамических исследований;

недостаточное гидростатическое давление в скважине, порождающее опасность смятия находящейся в ней обсадной колонны и выброса пластового флюида на поверхность;

применение специальных материалов для закупорки поглощающих пластов, требующее их доставки на буровую, монтажа специальных устройств для ввода материалов в буровой раствор;

недоподъем тампонажного раствора за обсадной колонной, приводящий в ряде случаев к необходимости исправительных тампонажных работ.

Пластовые флюидопроявления:

газирование бурового раствора, приводящее к необходимости его дегазации и дополнительной обработке химическими реагентами;

161

разбавление бурового раствора пластовыми флюидами, приводящее к необходимости его частичной замены;

межпластовые перетоки флюидов, требующие дополнительного разобщения пластов из-за их несовместимости при проходке открытым стволом;

заколонные флюидопроявления, приводящие к опасному скоплению газа непосредственно на устье бурящейся скважины;

возникновение грифонов, приводящее к проникновению газа на дневную поверхность и возникновению его взрывоопасной концентрации в окрестностях скважины.

Прихваты колонны труб в необсаженном стволе скважины: одностороннее прижатие колонны труб к проницаемому пласту за счет

репрессии между ним и скважиной; заклинивание колонны в желобной выработке вида «замочная сква-

жина»; заклинивание долота сальником или в сужении ствола скважины;

прихват колонны обвалившимися породами.

Такая классификация осложнений, не претендуя на законченность, позволяет дифференцировать технологические приемы борьбы с ними.

Проходка ствола скважины в массиве горных пород сопровождается существенным нарушением поля напряжений в ее окрестностях и концентрацией напряжений на ее стенках. В процессе углубления ствол скважины заполнен циркуляционным агентом с плотностью значительно ниже плотности горных пород. На открытой поверхности стенок скважины проявляется действие сил бокового распора, которые вызывают деформацию горных пород в окрестностях ствола и могут приводить к их разрушению.

Рассмотрим напряженное состояние элементарного объема горной породы на расстоянии r от оси скважины.

На основании решения задачи Ляме можно записать

 

 

 

 

a2

 

 

a2

 

 

 

σr

= q

1

 

 

 

; σn = q 1+

 

 

 

,

(7.1)

r

2

r

2

 

 

 

 

 

 

 

 

 

 

 

ãäå σr − радиальное напряжение; q − некоторый параметр напряжения; a − радиус скважины; σn тангенциальное напряжение.

Параметр напряжения q можно определить из условия, что при r → ∞ имеем σr = σn = q, ò.å. q представляет собой главное напряжение в масси-

ве пород. На глубине H главное напряжение q = λρã.ïgH, где λ = 1,0 в массиве горных пород и λ = 0,2ч1,0 на стенках ствола скважины; ρã.ï

плотность горных пород.

Тогда выражение (7.1) можно переписать в виде

 

 

 

 

 

a2

 

 

 

 

 

 

 

σr

= λ 1

 

 

 

ρã.ï gH;

 

 

(7.2)

r

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a2

 

 

 

 

 

 

 

σn

= λ 1+

 

 

 

 

ρã.ïgH;

 

(7.3)

 

 

2

 

 

 

 

 

 

 

r

 

 

 

 

 

 

 

 

 

 

касательное напряжение в окрестностях скважины

 

τ =

1

 

− σ

 

) = λ

a2

ρ

 

gH.

(7.4)

 

n

 

 

ã.ï

 

2

 

 

 

 

r

 

 

 

r

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

162

На стенках порожней скважины (при r = a) σna = 0; σna = 2λρã.ïgH,

τa = λρã.ïgH.

Если напряжение τ в пределах некоторого радиуса rc превышает сопротивление горных пород на сдвиг, то в этой зоне происходит пластиче- ская деформация. Радиус rc зоны пластических деформаций можно определить из условия

τ = λ a2 ρã.ïgH = τïð,

rñ2

ãäå τïð – предельное сопротивление горной породы на сдвиг. Отсюда

rc = a λρã.ï gH / τïð .

(7.5)

За пределами радиуса rc горная порода будет оставаться в состоянии упругого напряжения. Но границы зоны пластических деформаций вследствие увлажнения пород и явления ползучести могут расширяться и захватывать все более обширную область.

Для зон пластических деформаций, т.е. в пределах a r rc. Е.И. Заксоном получены следующие выражения:

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 −

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r

 

 

 

 

 

 

 

σ

 

= q

 

rc

 

ln

;

 

 

 

 

 

 

r

 

 

 

r

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ln

 

c

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 −

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

r

 

 

 

r

 

σ

 

= q r

a

 

 

 

+

 

 

 

c

 

 

ln

.

n

 

 

 

 

 

r

 

 

 

 

 

 

r

 

 

 

 

 

 

 

 

 

a

 

 

 

 

 

c

 

 

 

 

 

ln

c

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Касательное напряжение в этой же зоне будет постоянным:

τ = q(a / rc )2 = τïð .

(7.6)

(7.7)

На стенках скважины (при r = a) имеем σr = 0; σn = 2q.

Присутствие на контакте с горной породой инородной среды (бурового промывочного раствора) вызывает физико-химические процессы на границе раздела: осмотические явления, поверхностную гидратацию, растворение, капиллярное проникновение и т.п. В некоторых породах они могут вызывать заметное изменение их агрегатного состояния, сил внутреннего сцепления и в итоге могут существенно преобразовывать свойства горных пород в окрестностях скважины по сравнению с первоначальными в естественном залегании. Особенно опасно повышение склонности к пластиче- скому течению глинистых и хемогенных горных пород.

Разупрочнению горных пород в стенках ствола скважины также способствует развитие усталостных явлений, происходящих под воздействием гидродинамических ударов и переменного давления в стволе при спускоподъемных операциях.

163

При циркуляции промывочного агента по стволу нарушается температурный режим горных пород в стенках скважины, что также вызывает появление дополнительных напряжений.

Наконец, на контакте пластовых флюидов с промывочным агентом могут наблюдаться длительные или кратковременные нарушения гидродинамического равновесия, и в таких случаях подвижная среда (жидкость или газ) под действием разности давлений будет легко перетекать в область пониженного давления. Может возникнуть переток промывочного агента в окружающие ствол горные породы либо, наоборот, пластовой жидкости в ствол скважины.

Все эти нарушения равновесного состояния в окрестностях скважины и на ее стенках неблагоприятно сказываются на процессе углубления ствола и осложняют его.

Под осложнением понимают нарушение нормального процесса строительства скважины, которое требует принятия безотлагательных и эффективных мер для его устранения и продолжения бурения. В отличие от аварий осложнение, как правило, не связано с перерывом в процессе проходки скважины.

На борьбу с осложнениями в глубоком бурении затрачивается в среднем до 20–25 % календарного времени. Это выдвигает проблему предупреждения осложнений и борьбы с ними как весьма актуальную.

Опыт практической работы показывает, что всякое осложнение легче предупредить, чем затем его ликвидировать.

Причем на практике одно возникшее осложнение нередко влечет за собой другое (поглощение бурового раствора может вызвать приток из высоконапорного горизонта; осыпи и обвалы – затяжку инструмента и т.д.), а сочетание нескольких осложнений в одном стволе чрезвычайно усложняет задачу их ликвидации и приводит к значительным затратам календарного времени и средств.

Неликвидированное осложнение может стать причиной аварии. Под аварией в бурении понимается возникновение в стволе скважины непредвиденной ситуации, в которой невозможно продолжение работ по проходке ствола скважины или выполнение в нем запланированных работ, а также использование скважины по назначению без устранения возникшего препятствия посредством специальных работ, не входящих в технологиче- ский цикл. Специальные работы, выполняемые для ликвидации аварии, называются аварийными. Авария в бурении и связанные с нею аварийные работы приводят к непроизводительной потере рабочего времени, нецелесообразному расходованию трудовых ресурсов, значительным материальным и финансовым затратам.

Âсвязи с этим большое внимание должно уделяться предупреждению аварий на основе систематического контроля за состоянием бурового инструмента и ствола скважины, профилактике осложнений и соблюдению производственной дисциплины.

Âарсенале эффективных средств предупреждения осложнений при

бурении скважин имеются следующие основные:

обоснование конструкции скважины с учетом всех специфических особенностей разреза;

правильный подбор промывочных агентов по составу и свойствам для каждого специфического интервала и грамотная оперативная корректировка режима промывки в зависимости от свойств проходимых горных пород;

164

Соседние файлы в папке Техника и технология бурения нефтяных и газовых скважин