Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Глава 2.doc Агрохимия учебник.doc
Скачиваний:
98
Добавлен:
29.02.2016
Размер:
502.27 Кб
Скачать

2.6. Вынос азота, фосфора и калия с 1 ц основной продукции с учетом побочной,

кг (торфяные почвы)

Культура

Вид продукции

N

Р2О5

К2О

Озимая пшеница

Зерно

3,46

1,60

4,42

Озимая рожь

«

3,31

1,67

4,79

Яровая пшеница

«

4,59

1,50

5,19

Ячмень яровой

«

4,03

1,40

4,38

Овес

«

4,00

1,64

4,26

Кукуруза

«

4,35

1,33

4,35

Смеси однолетних трав

Зеленая масса

0,57

0,13

0,50

Вико-овсяная смесь

«

0,51

0,12

0,64

Горохо-овсяная смесь

«

0,66

0,14

0,60

Пелюшко-овсяная смесь

«

0,53

0,12

0,42

Люпиновые смеси

«

0,60

0,15

0,43

Райграс однолетний

Сено

2,00

0,70

0,40

Однолетние злаковые травы

«

2,40

0,72

0,31

Растения потребляют элементы питания в определенных соотношениях. Если за единицу принять удельный вынос фосфора, то для зерновых соотношение между N : Р2О5 : К2О : СаО : Mg составляет примерно 2,4 : 1,0 : 2,0 : 0,3 : 0,2.

Относительное содержание элементов минерального питания в основной и побочной продукции различных сельскохозяйственных культур определяется, прежде всего, их видовыми особенностями, но зависит также от сорта и условий выращивания. Содержание азота, фосфора значительно выше в хозяйственно ценной части урожая - зерне, корне- и клубнеплодах, чем в соломе и ботве. Калия же содержится больше в соломе и ботве, чем в товарной части урожая.

Картофель, сахарная свекла, кормовые корнеплоды и силосные культуры для создания высокого урожая потребляют гораздо больше питательных элементов, чем зерновые культуры.

У картофеля и корнеплодов соотношение элементов питания резко отличается от такового в зерновых культурах и составляет соответственно 4 : 1 : 5 : 1 : 0,6 и 3,2 : 1 : 4,6 : 1,3 : 1,5.

Наиболее продуктивное использование сельскохозяйственными культурами питательных элементов из почвы и удобрений обеспечивается при наиболее благоприятных почвенно-климатических условиях, высоком уровне агротехники в сочетании с рациональным применением удобрений.

2.2. Питание растений

Питание растений – это процесс поглощения и усвоения ими питательных элементов. Благодаря ему происходит круговорот веществ и энергии, который связывает мир минеральной, неживой природы с миром живых организмов. Д. Н. Прянишников писал: «Поглощение ионов и солей, включение их в метаболизм и круговорот обмена веществ составляет сущность питания растений». Знание закономерностей и особенностей питания растений позволяет правильно выбирать виды и формы удобрений, рассчитывать дозы их внесения, разрабатывать системы удобрения культур, природоохранные мероприятия.

В живой природе различают два типа питания – гетеротрофный и автотрофный. Для растений характерен автотрофный тип питания, т. е. они сами синтезируют органические вещества за счет минеральных соединений, в то время как для животных и подавляющего большинства микроорганизмов характерен гетеротрофный тип питания – использование готовых органических веществ, ранее синтезированных другими организмами. Благодаря способности хлорофилла использовать солнечный свет, растения играют особую роль на земле. Вся жизнь на нашей планете обусловлена созидательной работой растений. Следует отметить, что доказана принципиальная возможность непосредственного усвоения растениями таких органических соединений, как витамины, антибиотики, ростовые вещества, аминокислоты. Однако усвоение этих органических соединений незначительно и имеет ограниченное значение в питании растений. При гетеротрофном типе питания, характерном для животных организмов, грибов и микробов, используются белки, жиры, углеводы, иные сложные органические соединения, выработанные другими организмами. Автотрофы – зеленые растения и некоторые микроорганизмы – способны питаться исключительно неорганическими (минеральными) веществами. Они, в отличие от других организмов, используя энергию солнечного света, могут строить свое тело, создавая из низкомолекулярных соединений (СО2, Н2О) и минеральных солей сложные органические соединения. Все необходимые для питания элементы растения получают через листья и корни – из воздуха и почвы. Поэтому различают воздушное и корневое питание растений.

Воздушное питание состоит в усвоении зеленым растением, главным образом листьями, углекислого газа с помощью световой энергии. В процессе фотосинтеза растения усваивают углекислый газ (СО2) и образуют органические соединения (углеводы, белки, жиры), содержащие восстановленный углерод. Для восстановления углерода они используют водород воды, при этом выделяя в атмосферу свободный (молекулярный) кислород. Источником энергии при фотосинтезе служит солнечный свет, поглощаемый хлорофиллом, который не рассеивается в виде тепла, а преобразуется в химическую энергию. Таким образом, в процессе фотосинтеза из углекислоты воздуха и воды почвы при участии солнечных лучей образуются безазотистые органические вещества (углеводы).

6СО2 + 12Н2О + С6Н12О6 + 6Н2О + 6О2.

Простые углеводы используются растением для синтеза сложных: сахарозы (С12Н22О11), крахмала и клетчатки (С6Н12О6)n, а также белков, жиров, органических кислот и т.д.

Одновременно с образованием органических веществ в растениях происходит их распад в процессе дыхания. Сущность дыхания состоит в окислении углеводов кислородом. Этот процесс противоположен фотосинтезу. Если фотосинтез сопровождается поглощением энергии, то при дыхании происходит освобождение энергии. При дыхании расходуется примерно 20% органического вещества, созданного во время фотосинтеза. Дыхание проходит по следующей схеме:

С6Н12О6 + 6О2 → 6СО2 +6Н2О + 686 ГДж.

Выделяющаяся при дыхании энергия используется в растениях на синтез более сложных органических веществ, на поглощение корнями питательных элементов и воды из почвы и передвижение их к листьям, а от них – к растущим частям: точкам роста, цветкам, семенам, клубням и т.д. В образовании органических соединений как источник энергии участвует аденозинтрифосфорная кислота (АТФ).

В обычных условиях растения используют не больше 2–3% солнечной энергии. Поэтому одной из задач земледелия является увеличение фотосинтетической деятельности возделываемых культур. Этому способствуют увеличение листовой поверхности и удлинение периода ее жизнедеятельности, оптимизация питания растений, выведение более продуктивных сортов и разработка новых технологий возделывания.

Из воздуха растения поглощают не только углекислый газ, но и азот (бобовые культуры), а также легкорастворимые соли. Эта их способность используется при внекорневых подкормках, а также обработке средствами защиты растений.

При корневом питании растения поглощают корнями минеральные элементы и включают их в обмен веществ между растением и внешней средой. Поступление элементов через корни, их передвижение и усвоение тесно связаны с фотосинтезом, дыханием, другими биохимическими процессами и требуют затрат энергии. При этом растения обладают избирательной способностью поглощения элементов питания.

Корнями растения усваивают ионы (катионы и анионы) из почвенного раствора, а также из почвенно-поглощающего комплекса (ППК). Катионы и анионы, находящиеся в поглощенном состоянии на ППК также как ионы почвенного раствора могут обмениваться на катионы и анионы, адсорбированные на поверхности клеток корня (Н+ и NO3-, анионы органических кислот) и являются важным источником питания растений. Контактный обмен ионов клеточной оболочки ризодермы с ионами, находящимися на поверхности ППК, может осуществляться без перехода ионов в почвенный раствор. Тесный контакт происходит благодаря выделению слизи корневыми волосками и отсутствию кутикулы у ризодермы, так что зона поглощения корней и частицы почвы образуют как бы единую коллоидную систему. При этом азот поглощается в виде анионов NO3- и катионов NH4+ (бобовые способны усваивать из атмосферы и молекулярный азот). Фосфор и сера поглощаются в форме анионов HPO42-, PO43-, H2PO4-, SO42-; калий, кальций, магний, натрий, железо – в виде катионов К+, Са2+, Mg2+, Na+, Fe3+; микроэлементы – в виде анионов и катионов. Кроме этих элементов корни растений способны поглощать из почвы СО2 (до 5% от общего его потребления), а также аминокислоты, витамины, ферменты и некоторые другие растворимые органические вещества.

Корневые системы растений существенно различаются по строению, форме, распределению в почве и поглотительной способности. Так, по данным Н.А. Качинского, масса корней в условиях нечерноземной зоны достигала у овса 28% от надземной массы, красного клевера – 69, на западно-предкавказском черноземе у кукурузы – 16, озимой пшеницы – 70, люцерны – 166% веса надземной части растения.

У большинства культурных растений корни проникают на глубину до 2 м, но их основная масса располагается в слое почвы на глубине 30–50 см. Интенсивность развития корневой системы в значительной степени зависит от обеспеченности почвы питательными элементами. В бедных почвах развивается более мощная корневая система в ущерб урожаю.

По форме корневые системы растений могут быть стержневыми или мочковатыми. Поверхность корней, поглощающая элементы питания, достигает больших размеров. Например, у ячменя общая поглощающая поверхность корней и корневых волосков на одном гектаре достигает площади 200–300 га. Корень состоит из корневого чехлика, зоны деления, зоны растяжения, зоны корневых волосков (рис. 2.1). Наибольшей способностью к поглощению обладают корневые волоски молодых корней. На 1 мм2 корня может располагаться 300–400 корневых волосков. У зерновых культур они бывают длиной 4–5 мм, у мятлика лугового – 10–12 мм. Особенности корневых систем некоторых культур приведены в табл. 2.7.

Корневые волоски обычно живут несколько суток и по мере старения отмирают. Корни не только поглощают питательные элементы из почвы, в них происходит также синтез органических соединений (аминокислот, белков), которые используются самой корневой системой и частично поступают в надземную часть растения.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]