Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Курс лекций по ТКМ.doc
Скачиваний:
150
Добавлен:
26.02.2016
Размер:
13.84 Mб
Скачать

Федеральное агентство по образованию

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

КАМСКИЙ ГОСУДАРСТВЕННЫЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ

ТЕХНОЛОГИЯ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ

Курс лекций, методические указания

и контрольные задания для студентов заочного

факультета технических специальностей

Набережные Челны, 2005

УДК 669.017. (075.8.).

Технология конструкционных материалов: Курс лекций, методические указания

и контрольные задания для студентов заочного факультета технических специальностей / Составители: Волков Д.А., Шутова Л.А.. Наб. Челны: КамПИ, 2005.

Курс лекций по дисциплине «Технология конструкционных материалов» составлен в соответствии с государственным стандартом по подготовке специалистов технического профиля. Приведены методические указания по выполнению контрольной работы.

Работа подготовлена на кафедре «Машины и технология обработки металлов давлением» и предназначена для студентов машиностроительных и автомеханических специальностей.

Ил.: 40

Рецензент: д.т.н., проф. Шибаков В.Г.

Печатается в соответствии с решением научно-методического совета Камского государственного политехнического института

 Камский государственный

политехнический институт

2005 г.

Введение

Технология конструкционных материалов – дисциплина, которая изучает способы получения металлов и сплавов, методы изготовления и обработки заготовок с целью экономичного подтверждения технологического процесса.

Задачи дисциплины: научить определять основные материалов, знать классификацию и правильно производить выбор материалов с учетом эксплуатации изделия, знать способы повышения свойств путем термической и д. способов обработки, знать основные технологические и технико-экономические характеристики оборудования, оснастки и инструмента.

Теоретической основой данного курса являются соответствующие разделы дисциплин «Химия», «Физика», «Черчение». Используются знания законов протекания химических реакций, законов агрегатного состояния веществ, умение читать чертежи и т.д.

Основные разделы дисциплины:

  1. Свойства конструкционных материалов.

  2. Основы металлургического производства.

  3. Технология литейного производства.

  4. Технология изготовления заготовок методом обработки материалов давлением.

  5. Технология сварочного производства.

  6. Технология обработки металлов резанием.

  7. Специальные виды обработки.

  8. Технология изготовления изделий из неметаллических материалов.

Каждый студент заочной формы обучения по курсу «Технология конструкционных материалов» выполняет контрольную работу по теме: «Разработка технологического процесса формообразования заготовок пластическим деформированием».

Классификация материалов

Сталь– сплав железа с углеродом, в котором доля углерода не превышает 2,14%. В стали всегда присутствуют постоянные примеси: этот кремнийSi0,37%; марганецMn0,8%; сераS0,07%; фосфорP0,07% и скрытые примеси: кислород О2– в виде окисловFeO,MnO; азотN– в виде нитридов; водород Н2– флокен. Оксиды и нитриды, находящиеся в стали ухудшают ее качество, а соответственно снижают свойства готовых изделий, поэтому эти примеси контролируют в соответствии с нормативными документами и ограничивают технологической документацией . Степень загрязненности оценивают по балльной системе (от 0 до 5). Чем выше балл, тем больше количество и размеры включений.

Флокен – неисправимый брак и в этом случае металл отправляют на переработку.

Чугун– сплав железа с углеродом, в котором доля углерода от 2,14% до 6,67%. В чугуне всегда присутствуют постоянные примеси:Si3%; марганецMn5%; сераS0,5%; фосфорP0,5%.

Ферросплавы– это сплавы железа с одним или несколькими химическими элементами.

Цветные металлы и сплавы

Медь

маркировка

М1

М2

М3

М0

М00

содержание меди

99,9%

99,8%

99,7%

99,99%

99,999%

Сплавы на основе меди:

Латунь– сплав меди с цинком. Маркировка: Л 70, Л 85 – т.е. содержание меди в латуни 70%, остальное – цинк. Для придания специальных свойств латуни в их состав вводят дополнительно химические элементы, о чем указывают в маркировке: ЛС 59-1 – содержание меди 59%, свинца – 1%, остальное – цинк; ЛО 60-2 – содержание меди 60%, олова – 2%, остальное – цинк.

Бронза– сплав меди с одним или несколькими химическими элементами, среди которых может быть и цинк, но в качестве второго и последнего химического элемента. Маркировка: Бр Б2 – бериллиевая бронза, содержание бериллия – 2%, остальное – медь; Бр АЖ 9-4 – содержание алюминия – 9%, железа – 4%, остальное – медь; Бр ОЦС 9-1-1– содержание олова – 9%,цинка – 1%, свинца – 1%, остальное – медь.

Мельхиор– сплав меди с никелем.

Алюминий

маркировка

А 90

А 95

А 99

А 999

содержание алюминия

99,90%

99,95%

99,99%

99,999%

Сплавы на основе алюминия:

Дюралюминий–Al+Mg(5-8%) + примеси (Cu, Si). Маркировка: Д1, Д16 – где цифра – порядковый номер сплава.

Силумин–Al+Si+ примеси (Mg,Cu). Маркировка: АЛ2 – алюминиевый сплав, полученный методом литья (цифра указывает на порядковый номер сплава); АК17 – алюминиевый сплав, полученный методом ковки; АВ95 – высокопрочный алюминиевый сплав.

Неметаллы: пластмасса, стекло, керамика, фарфор, резина, дерево и т.д.

Кристаллическое строение металлов

Все металлы в твердом состоянии имеют кристаллическое строение. Ато­мы в твердом металле расположены упорядочение и образуют кристалли­ческие решетки (рис. 1).

Рис. 1. Схемы кристаллических решеток: а – объемно-центрированная кубическая; б –гранецентрированная; в – гексагональная плотноупакованная

Кристаллическая решеткапредстав­ляет собой наименьший объем кристал­ла, дающий полное представление об атомной структуре металла, и носит название элементарной ячейки.

Для металлов характерны кристал­лические решетки трех видов: кубичес­кая объемно-центрированная (ОЦК), в которой атомы расположены по вершинам элементарной ячейки и один в ее центре; кубическая гранецентрированная (ГЦК), в которой атомы рас­положены по вершинам элементарной ячейки и в центрах ее граней; гексагональная плотноупакованная (ГПУ), представляющая со­бой шестигранную призму, в которой атомы расположены в три слоя.

Свойства материала зависят от вида кристаллическ4ой решетки и параметров, ее характеризующих:

1) межатомное расстояние, измеряется в ангстремах 1А=10-8см

2) плотность упаковки (базис решетки– число частиц, приходящихся на одну элементарную ячейку). Кубическая простая – Б1, ОЦК – Б2, ГЦК – Б4, ГПУ – Б6.

3) координационное число(КЧ) – максимальное количество атомов равноудаленных и находящихся на ближайшем расстоянии от атома, взятоого за точку отсчета. Кубическая простая – КЧ=6, ОЦК – КЧ=8, ГЦК – КЧ=12, ГПУ – КЧ=12.

Свойства материала, определенные в направлении передней плоскости и диагональной плоскости, отличаются – это явление называется анизот­ропия, т. е. неравномерность свойств в различных направлениях. Этим свойством обладают все металлические материалы. Аморфные тела обладают свойствомизотропии, т.е. имеют одинаковые свойства во всех направлениях.

Кристаллические решетки могут иметь различные структурные несовершенства, существенно изменяющие свойства материала. Реальный единичный кристалл всегда имеет свободную (наружную) поверхность, на которой уже вследствие поверхностного натяже­ния решетка искажена.

Дефекты внутреннего строения под­разделяют на точечные, линейные и плоскостные.

К точечным дефектам относятся вакансии (когда отдельные узлы кристаллической решетки не заняты ато­мами); дислоцированные атомы (если отдельные атомы оказываются в междоузлиях) или примесные атомы, ко­личество которых даже в чистых металлах весьма велико. Около таких дефектов решетка будет упруго ис­каженной на расстоянии одного-двух периодов (рис. 2, а).

Рис. 2. Дефекты кристаллической решетки: а - точечные; б - линейные; в - плоскостные

Линейные дефекты малы в двух изме­рениях и достаточно велики в третьем. К таким дефектам относятся смещение атомных плоскостей или дислокации и цепочки вакансий (рис. 2,б). Важ­нейшим свойством таких дефектов яв­ляются их подвижность внутри кри­сталла и активное взаимодействие меж­ду собой и с другими дефектами.

Изменение кристаллической решетки материала возможно под воздействием внешних факторов, а именно температуры и давления. Некоторые металлы в тве­рдом состоянии в различных тем­пературных интервалах приобретают разные кристаллические решетки, что всегда приводит к изменению их фи­зико-химических свойств.

Существование одного и того же металла в нескольких кристаллических формах носит название полиморфи­зма. Температура, при которой происходит изменение кристаллической решетки – называется температурой полиморфного превращения. На этом явлении основаны все процессы термической обработки. Полиморф­ные модификации обозначают гре­ческими буквами (,,и другими, которые в виде индекса добавляют к символу элемента).

Рис. Полиморфное превращение чистого железа