
- •2. Анализ и интерпретация модели
- •7.Имитационное моделирование.
- •8. Инструментальные программные средства для моделирования динамических систем.
- •9. Информационные модели. Примеры информационных моделей.
- •Математические модели с сосредоточенными параметрами.
- •Математические модели с распределенными параметрами.
- •Математические модели, основанные на экстремальных принципах.
- •13. Метод статистических испытаний
- •14. Понятие динамической системы
- •15. Модели с сосредоточенными и распределенными параметрами
- •16. Моделирование как метод научного познания
- •17. Моделирование последовательностей независимых и зависимых случайных испытаний.
- •18. Моделирование систем массового обслуживания.
- •19. Моделирование стохастических систем.
- •21. Натурные и абстрактные модели.
- •22.Общий алгоритм моделирования дискретной случайной величины.
- •23.Основные структуры в информационном моделировании.
- •24.Переход детерминированных систем к хаотическому поведению.
- •26) Примеры математических моделей в химии, биологии, экологии, экономике.
- •27) Программные средства для моделирования предметно-коммуникативных сред (предметной области).
- •28. Различные подходы к классификации математических моделей.
- •29. Системный подход в научных исследованиях.
- •31. Учебные компьютерные модели
- •32. Численный эксперимент. Достоверность численной модели.
- •33. Численный эксперимент. Его взаимосвязи с натурным экспериментом и теорией.
- •34. Этапы компьютерного эксперимента.
34. Этапы компьютерного эксперимента.
Э т а п 1. Построение математической модели (составление уравнений, описывающих исследуемое явление).
Э т а п 2. Выбор численных методов расчета (построение дискретной модели, аппроксимирующей исходную математическую задачу, построение разностной схемы, разработка вычислительного алгоритма и т. д.).
Э т а п 3. Создание программы, реализующей вычислительный алгоритм.
Э т а п 4. Проведение расчетов и обработка полученной информации.
Э т а п 5. Анализ и интерпретация результатов расчетов, сравнение (если это возможно) с натурным экспериментом.
Обычно на последнем (5-м) этапе исследователь приходит к заключению о том, что необходимо внести определенные изменения в решения, принятые на этапах 1, 2 или 3.
Так, может выясниться, что построенная модель недостаточно хорошо отражает особенности исследуемого явления. В этом случае модель корректируется, вносятся соответствующие поправки в численные методы и реализующие их программы и выполняется новый расчет. Тем самым цикл вычислительного эксперимента воспроизводится в полном объеме.
При анализе результатов могут быть выявлены какие-либо недостатки используемых численных методов, связанные, в частности, с соображениями точности или эффективности. Изменение методов влечет за собой изменение соответствующих программ и т. д. Иначе говоря, цикл повторяется в несколько сокращенном виде (этапы 2–5).
Наконец, может оказаться неудачным некоторое программное решение, например выбранный способ работы с внешней памятью. Пересмотр таких решений приводит к повторению этапов 3–5.
В вычислительном эксперименте программа мыслится как экспериментальная установка, от первых опытов с которой вряд ли следует ожидать сколько-нибудь интересных результатов. Данные первых опытов послужат всего-навсего отправной точкой длительного процесса изменений и усовершенствований установки, который только и способен привести к достаточно обоснованным заключениям об исследуемом объекте.
Таким образом, появление первоначальной версии программы лишь в самых общих чертах намечает направление исследований. Основная же работа по программированию еще впереди – она связана с многократными модификациями программы, отражающими эволюцию математической модели и методов ее расчета. Число циклов вычислительного эксперимента, каждый из которых сопряжен с модификацией расчетной программы, нередко достигает десятков тысяч. Поэтому рациональная организация таких модификаций – ключ к эффективному программированию данного класса задач.