Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
конспект лекций.docx
Скачиваний:
313
Добавлен:
19.02.2016
Размер:
187.34 Кб
Скачать

1.2 Понятие физической величины. Системы физических единиц

Понятие физической величины — общее в физике и метрологии и применяется для описания материальных систем объектов.

Физическая величина, как указывалось выше, - это характеристика, общая в качественном отношении для множества объектов, процессов, явлений, а в количественном — индивидуальная для каждого из них. Например, все тела обладают собственной массой и температурой, но числовые значения этих параметров для разных тел различны. Количественное содержание этого свойства в объекте является размером физической величины, числовую оценку ее размеров называют значением физической величины.

Физическая величина, выражающая одно и то же в качественном отношении свойство, называется однородной (одноименной).

Основная задача измеренийполучение информации о значениях физической величины в виде некоторого количества принятых для нее единиц.

Значения физических величин подразделяются на истинные и действительные.

Истинное значение — это значение, идеальным образом отражающее качественно и количественно соответствующие свойства объекта.

Действительное значение — это значение, найденное экспериментально и настолько приближенное к истинному, что может быть принято вместо него.

Физические величины классифицируют по ряду признаков. Различают следующие классификации:

1) по отношению к сигналам измерительной информации физические величины бывают: активные — величины, которые без использования вспомогательных источников энергии могут быть преобразованы в сигнал измерительной информации; пассивные — величины, которые нуждаются в использовании вспомога­тельных источников энергии, посредством которых создается сигнал измерительной информации;

2) по признаку аддитивности физические величины разделяются на: аддитивные, или экстенсивные, которые можно измерять по частям, а также точно воспроизводить с помощью многозначной меры, основанной на суммировании размеров отдельных мер; неаддитивные, или интенсивные, которые непосредственно не измеряются, а преобразуются в измерение величины или измерение путем косвенных измерений. (Аддитивность (лат. additivus — прибавляемый) — свойство величин, состоящее в том, что значение величины, соответствующее целому объекту, равно сумме значений величин, соответствующих его частям).

Эволюция развития систем физических единиц.

  1. Метрическая система мер - первая система единиц физических величин

была принята в 1791 г. Национальным собранием Франции. Она включала в себя единицы длины, площади, объема, вместимости и веса, в основу которых были положены две единицы — метр и килограмм. Она отличалась от системы единиц, ис­пользуемой сейчас, и еще не была системой единиц в современном понимании.

  1. Абсолютная система единиц физических величин.

Методику построения системы единиц как совокупности основных и производных единиц разработал и предложил в 1832 г. немецкий математик К. Гаусс, назвав ее абсолютной системой. За основу он взял три независимые друг от друга величины - массу, длину, время.

За основные единицы измерения этих величин он принял миллиграмм, миллиметр, секунду, предполагая, что остальные единицы можно определить с их помощью.

Позднее появился ряд систем единиц физических величин, построенных по принципу, предложенному Гауссом, и базирующихся на метрической системе мер, но различающихся основными единицами.

В соответствии с предложенным принципом Гаусса основными системами единиц физических величин являются:

  1. Система СГС, в которой основными единицами являются сантиметр как единица длины, грамм как единица массы и секунда как единица времени; была установлена в 1881 г.;

  2. Система МКГСС. Применение килограмма как единицы веса, а позднее как единицы силы вообще привело в конце XIX в. к формированию системы единиц физических величин с тремя основными единицами: метр — единица длины, килограмм - сила — единица силы, секунда — единица времени;

5. Система МКСА - основными единицами являются метр, килограмм, секунда и ампер. Основы этой системы предложил в 1901 г. итальянский ученый Дж. Джорджи.

Международные отношения в области науки и экономики требовали унификации единиц измерения, создания единой системы единиц физических величин, охватывающей различные отрасли области измерений и сохраняющей принцип когерентности, т.е. равенство единице коэффициента пропорциональности в уравнениях связи между физическими величинами.

  1. Система СИ. В 1954 г. комиссия по разработке единой Международной

системы единиц предложила проект системы единиц, который был утвержден в 1960 г. XI Генеральной конференцией по мерам и весам. Международная система единиц (сокращенно СИ) свое название взяла от начальных букв французского наименования Система Интернешнл.

Международная система единиц (СИ) включает в себя семь основных (табл. 1), две дополнительные и ряд внесистемных единиц измерения.

Таблица 1 - Международная система единиц

Физические величины, имеющие официально утвержденный эталон

Единица измерения

Сокращенное обозначение единицы

физической величины

русское

международное

Длина

метр

м

m

Масса

килограмм

кг

kg

Время

секунда

с

s

Сила электрического тока

ампер

А

А

Температура

кельвин

К

K 1

Единица освещенности

кандела

канд

cd |

Количество вещества

моль

моль

mol

Источник: Тюрин Н.И. Введение в метрологию. М.: Издательство стандартов, 1985.

Основные единицы измерения физических величин в соответствии с решениями Генеральной конференции по мерам и весам определяются следующим образом:

  • метр - длина пути, который проходит свет в вакууме за 1/299 792 458 долю секунды;

  • килограмм равен массе международного прототипа килограмма;

  • секунда равна 9 192 631 770 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома Сs133;

  • ампер равен силе неизменяющегося тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малой площади кругового сечения, расположенным на расстоянии 1 м один от другого в вакууме, вызывает на каждом участке проводника длиной 1 м силу взаимодействия;

  • кандела равна силе света в заданном направлении источника, испускающего ионохранические излучения, энергетическая сила света которого в этом направлении составляет 1/683 Вт/ср;

  • кельвин равен 1/273,16 части термодинамической температуры тройной точки воды;

  • моль равен количеству вещества системы, содержащей столько же структурных элементов, сколько содержится атомов в С12 массой 0,012 кг2.

Дополнительные единицы Международной системы единиц для измерения плоского и телесного углов:

  • радиан (рад) — плоский угол между двумя радиусами окружности, дуга между которыми по длине равна радиусу. В градусном исчислении радиан равен 57°17'48"3;

  • стерадиан (ср) — телесный угол, вершина которого расположена в центре сферы и который вырезает на поверхности сферы площадь, равную площади квадрата со стороной, по длине равной радиусу сферы.

Дополнительные единицы СИ применяются для образования единиц угловой скорости, углового ускорения и некоторых других величин. Радиан и стерадиан используются для теоретических построений и расчетов, так как большинство важных для практики значений углов в радианах выражаются трансцендентными числами.

Внесистемные единицы:

- за логарифмическую единицу принята десятая доля бела - децибел (дБ);

- диоптрия - сила света для оптических приборов;

- реактивная мощность-вар (ВА);

- астрономическая единица (а.е.) - 149,6 млн км;

- световой год - расстояние, которое проходит луч света за 1 год;

- вместимость - литр (л);

- площадь - гектар (га).

Логарифмические единицы подразделяются на абсолютные, которые представляют собой десятичный логарифм отношения физической величины к нормированному значению, и относительные, образующиеся как десятичный логарифм отношения любых двух однородных (одноименных) величин.

К единицам, не входящим в СИ, относятся градус и минута. Остальные единицы являются производными.

Производные единицы СИ образуются с помощью простейших уравнений, которые связывают величины и в которых числовые коэффициенты равны единице. При этом производная единица называется когерентной.

Размерность является качественным отображением измеряемых величин. Значение величины получают в результате ее измерения или вычисления в соответствии с основным уравнением измерения: Q = q * [Q]

где Qзначение величины; qчисловое значение измеряемой величины в условных единицах; [Q] выбранная для измерения единица.

Если в определяющее уравнение входит числовой коэффициент, то для образования производной единицы в правую часть Уравнения следует подставлять такие числовые значения исходных величин, чтобы числовое значение определяемой производной единицы было равно единице.

(Например, за единицу измерения массы жидкости принят 1мл.,поэтому на упаковке обозначается: 250мл., 750 и т.д., но если за ед. измерения принять 1л., тогда то же кол-во жидкости будет обозначено 0,25л., 075л. соответственно).

Как один из способов образования кратных и дольных единиц используется десятичная кратность между большими и меньшими единицами, принятая в метрической системе мер. В табл. 1.2 приводятся множители и приставки для образования десятичных кратных и дольных единиц и их наименования.

Таблица 2 - Множители и приставки для образования десятичных кратных и дольных единиц и их наименования

Множитель

Приставка

Обозначение приставки

русское

международное

1018

экса

Э

Е

1015

пета

П

Р

1012

тера

т

Т

109

гига

г

G

106

мега

м

M

103

кило

к

к

102

гекто

г

h

101

дека

да

10-1

деци

д

d

10-2

санти

с

с

10-3

милли

м

m

10-6

микро

мк

10-9

нано

н

n

10-12

пико

п

p

10-15

фемто

ф

f

10-18

атто

а

а

(Эксаба́йт - единица измерения количества информации, равная 1018 или 260 байтам. 1 ЭэВ (эксаэлектронвольт) = 1018 электронвольт = 0.1602 джоуля)

Следует учитывать, что при образовании кратных и дольных единиц площади и объема с помощью приставок может возникнуть двойственность прочтения в зависимости оттого, куда добавляется приставка. Например, 1 м2 можно использовать как 1 квадратный метр и как 100 квадратных сантиметров, что далеко не одно и то же, потому что 1 квадратный метр это 10 000 квадратных сантиметров.

Согласно международным правилам, кратные и дольные единицы площади и объема следует образовывать, присоединяя приставки к исходным единицам. Степени относятся к тем единицам, которые получены в результате присоединения приставок. Например, 1 км2 = 1 (км)2 = (103м)2 == 106м2.

Для обеспечения единства измерений необходима тождественность единиц, в которых проградуированы все средства измерений одной и той же физической величины. Единство измерений достигается хранением, точным воспроизведением установленных единиц физических величин и передачей их размеров всем рабочим средствам измерений с помощью эталонов и образцовых средств измерений.

Эталон — средство измерения, обеспечивающее хранение и воспроизведение узаконенной единицы физической величины, а также передачу ее размера другим средствам измерения.

Создание, хранение и применение эталонов, контроль их состояния подчиняются единым правилам, установленным ГОСТ «ГСИ. Эталоны единиц физических величин. Порядок разработки, утверждения, регистрации, хранения и применения».

По подчиненности эталоны подразделяются на первичные и вторичные и имеют следующую классификацию.

Первичный эталон обеспечивает хранение, воспроизведение единицы и передачу размеров с наивысшей в стране точностью, достижимой в данной области измерений:

- специальные первичные эталоны - предназначены для воспроизведения единицы в условиях, в которых прямая передача размера единицы от первичного эталона с требуемой точностью технически неосуществима, например для малых и больших напряжений, СВЧ и ВЧ. Их утверждают в качестве государственных эталонов. Ввиду особой важности государственных эталонов и для придания им силы закона на каждый государственный эталон утверждается ГОСТ. Создает, утверждает, хранит и применяет государственные эталоны Государственный комитет по стандартам.

Вторичный эталон воспроизводит единицу в особых условиях и заменяет при этих условиях первичный эталон. Он создается и утверждается для обеспечения наименьшего износа государствен­ного эталона. Вторичные эталоны в свою очередь делятся по назначению:

- эталоны-копии - предназначены для передачи размеров единиц рабочим эталонам;

- эталоны сравнения - предназначены для проверки сохранности государственного эталона и для замены его в случае порчи или утраты;

- эталоны-свидетели — применяются для сличения эталонов, которые по тем или иным причинам не могут быть непосредственно сличаемы друг с другом;

- рабочие эталоны - воспроизводят единицу от вторичных эталонов и служат для передачи размера эталону более низкого разряда. Вторичные эталоны создают, утверждают, хранят и применяют министерства и ведомства.

Эталон единицыодно средство или комплекс средств измерений, обеспечивающих хранение и воспроизведение единицы с целью передачи ее размера нижестоящим по поверочной схеме средствам измерений, выполненных по особой спецификации и официально утвержденных в установленном порядке в качестве эталона.

Воспроизведение единиц в зависимости от технико-экономических требований производится двумя способами:

- централизованным — с помощью единого для всей страны или группы стран государственного эталона. Централизованно воспроизводятся все основные единицы и большая часть производных;

- децентрализованным — применим к производным единицам, размер которых не может передаваться прямым сравнением с эталоном и обеспечивать необходимую точность.

Стандартом установлен многоступенчатый порядок передачи размеров единицы физической величины от государственного эталона всем рабочим средствам измерения данной физической величины с помощью вторичных эталонов и образцовых средств измерения различных разрядов от наивысшего первого к низшим и от образцовых средств к рабочим.

Передача размера осуществляется различными методами по­верки, преимущественно известными методами измерений. Передача размера ступенчатым способом сопровождается потерей точности, однако многоступенчатость позволяет сохранять этало­ны и передавать размер единицы всем рабочим средствам измерения.