
- •Глава 1. История развития биомеханики 13
- •Глава 2. Топография тела человека.
- •Глава 3. Кинематика 59
- •Глава 4. Динамика движения материальной точки 89
- •Глава 1
- •Глава 2
- •Глава 2. Топография тела человека. Общие данные
- •Глава 2. Топография тела человека. Общие данные
- •38 Глава 2. Топография тела человека. Общие данные
- •Глава 2. Топография тела человека. Общие данные 39
- •42 Глава 2. Топография тела человека. Общие данные
- •Глава 2. Топография тела человека. Общие данные 43
- •Глава 2. Топография тела человека. Общие данные
- •Глава 2. Топография тела человека. Общие данные 49
- •Глава 3
- •3.1. Механическое движение. Система отсчета. Материальная точка. Траектория. Путь и перемещение. Вестибулярный аппарат как инерциальная система ориентации
- •3.2. Скорость. Средняя и мгновенная скорость. Временные характеристики движения
- •3.3. Равномерное прямолинейное движение и его графическое представление
- •Глава 3. "77
- •3.6. Движение по окружности, центростремительное и тангенциальное ускорения. Угловое ускорение
- •3.8. Элементы описания движения человека
- •4.1. Первый закон Ньютона. Инерциальная система отсчета
- •4.2. Масса. Сила. Второй закон Ньютона. Сложение сил
- •4.5. Динамика движения материальной точки по окружности. Центростремительная и тангенциальная силы. Плечо и момент силы. Момент инерции. Уравнения вращательного движения точки
- •5.2. Распределение массы в теле человека
- •5.3. Законы Ньютона для произвольного тела. Поступательное движение
- •5.4. Принцип относительности Галилея
- •5.5. Работа сил, действующих на тело, и его кинетическая энергия
- •5.6. Мощность
- •5.7. Работа и мощность человека. Эргометрия
- •5.8. Импульс тела. Импульс системы тел
- •Глава 6
- •6.1. Гравитационные силы. Закон всемирного тяготения
- •6.3. Силы трения покоя и скольжения. Коэффициент трения скольжения
- •6.4. Сила трения качения
- •6.5. Сила сопротивления при движении в жидкости или газе
- •Глава 7
- •7.1. Плечо силы. Момент силы. Момент инерции тела. Кинетическая энергия вращающегося тела. Основное уравнение динамики вращательного движения
- •7.2. Момент импульса тела. Изменение момента импульса
- •7.3. Моменты инерции некоторых тел
- •7.4. Свободные оси
- •7.5. Статика. Центр тяжести. Рычаги и блоки
- •Глава 8
- •8.1. Сила инерции. Принцип д'Аламбера
- •8.2. Сила тяжести. Вес тела
- •8.3. Перегрузки и невесомость. Движение в безопорном пространстве. Искусственное тяготение
- •8.4. Медицинские аспекты
- •8.5. Применение законов динамики для анализа движений спортсменов
- •Глава 9
- •9.1. Консервативные силы,
- •Глава 9. -| 75 Законы сохранения
- •9.2. Энергетика прыжков
- •9.3. Закон сохранения импульса. Реактивное движение
- •9.4. Применение закона сохранения импульса к ударам
- •9.5. Соударение предмета
- •9.6. Закон сохранения момента импульса
- •Глава 10
- •10.1. Свободные колебания: гармонические и затухающие колебания
- •10.4. Сложное колебание. Разложение сложного колебания на простые составляющие. Гармонический спектр
- •Глава 11
- •11.2. Виды деформации
- •11.3. Прочность
- •11.4. Твердость
- •11.5. Разрушение
- •Глава 12
- •12.1. Механические воздействия
- •12.2. Электромагнитное воздействие
- •12.4. Радиационные воздействия Ионизирующее излучение
- •12.5. Акустические воздействия
- •Глава 13
- •Глава 14
- •Глава 15
- •Глава 16
- •Глава 17
- •17.1. Биомеханика сердца и сосудов. Гемодинамика
- •17.2. Биомеханика дыхания
- •17.3. Биомеханика пищеварительной системы
- •17.4. Биомеханика опорно-двигательного аппарата (ода)
- •17.5 Биомеханика глаза
- •17.6. Биомеханика органов слуха
- •Глава 18
- •18.1. Биомеханика травм и заболеваний опорно-двигательного аппарата (ода)
- •18.2. Биомеханика инвалидов-спортсменов
3.2. Скорость. Средняя и мгновенная скорость. Временные характеристики движения
Для того, чтобы охарактеризовать насколько быстро изменяется в пространстве положение движущегося тела, используют специальное понятие скорость.
Если на всех участках траектории средняя скорость одинакова, то движение называется равномерным.
Средней скоростью тела на данном участке траектории называется отношение пройденного пути ко времени движения:
Вопрос о скорости бега является важным в спортивной биомеханике. Известно, что скорость бега на определенную дистанцию зависит от величины этой дистанции. Бегун может поддерживать максимальную скорость только в течение ограниченного времени. Средняя скорость стайеров обычно меньше, чем спринтеров. На рис. 3.8. показана зависимость средней скорости (V) от длины дистанции (S).
График зависимости проведен через точки, соответствующие средним скоростям для всех рекордных результатов у мужчин на дистанциях от 50 до 2000 м. Средняя скорость растет с увеличением дистанции до 200 м, а затем убывает.
В табл. 3.1 приведены мировые рекорды скорости.
Для удобства проведения вычислений среднюю скорость можно записать и через изменение координат тела. При прямолинейном движении пройденный путь равен разности координат конечной и начальной точек. Так, если в момент времени t0 тело находилось в точке с координатой xQ, а в момент времени tt — в точке с координатой х то пройденный путь Ах = хх — xQ, а время движения At = tj — tQ (в физике и математике принято использовать символ Д для обозначения разности однотипных величин или для обозначения очень маленьких интервалов). В этом случае
3.3. Равномерное прямолинейное движение и его графическое представление
Рассмотрим простейший вид движения — равномерное прямолинейное.
Равномерным называют движение, при котором за любые равные промежутки времени тело проходит одинаковые пути. В этом случае величина скорости остается неизменной (по направлению скорость может изменяться, если движение криволинейное).
Прямолинейным называется движение, при котором траектория является прямой линией. В этом случае направление скорости остается неизменным (величина скорости может изменяться, если движение не равномерное).
Равномерным прямолинейным называется движение, которое является и равномерным, и прямолинейным. В этом случае остаются неизменными и величина, и направление скорости.
Для описания прямолинейного движения ось X обычно направляют по линии движения, а положение тела указывают с помощью его координаты. В этом случае величина перемещения равна разности координат. Запишем определение скорости при равномерном прямолинейном движении:
Кинематика
Глава 3. "77
Кинематика
На рис. 3.16 приведены стробоскопические фотографии стального шарика, падающего вертикально вниз без начальной скорости, и шарика, которому сообщена горизонтальная скорость.
Рис. 3.16. Стробоскопическая фотография свободного падения
Траектория движения свободно падающего тела зависит от направления вектора начальной скорости. Если тело брошено вертикально вниз, то траектория — вертикальный отрезок, а движение является равнопеременным. Если тело брошено вертикально вверх, то траектория состоит из двух вертикальных отрезков. Сначала тело поднимается, двигаясь равнозамедленно. В точке наивысшего подъема скорость становится равной нулю, после чего тело опускается, двигаясь равноускоренно. Если вектор начальной скорости направлен под углом к горизонту, то движение тела происходит по параболе. Так при отсутствии сопротивления воздуха двигаются брошенный бейсбольный мяч, диск, молот, спортсмен прыгающий в длину (в высоту), летящая пуля и др.
Предположим, что тело брошенное под углом к горизонту (^имеет начальную скорость vq, рис. 3.17.
Рис. 3.17. Движение тела, брошенного под углом к горизонту
Движение происходит в вертикальной плоскости, проходящей через вектор начальной скорости. Поместим начало координат в начальную точку, а координатные оси направим горизонтально (X) и вертикально вверх (Y). Ускорение в любой точке полета равно ускорению свободного падения g.
Проекция вектора^ на ось Нравна нулю. Поэтому движение вдоль этой оси является равномерным со скоростью vx = w0-cos(90). Проекция вектора g на ось У равна —g. Поэтому движение вдоль этой оси является равнопеременным с ускорением —g и начальной скоростью vQ = u0-sin(60). Таким образом, тело, брошенное под углом к горизонту участвует одновременно в двух независимых движениях: равномерном движении по горизонтали и в равнопеременном — по вертикали. Дальность полета максимальна при 90 = 45°. Характеристики движения по двум осям представлены в табл. 3.2.
Следует иметь в виду, что скорости в симметричных точках параболы по модулю одинаковы, но направление вертикальных проекций противоположное.
Тело в баллистическом движении может пересечь ось X, если исходная точка броска находилась выше, чем точка приземления.
Рассмотрим некоторые примеры теоретических расчетов.
Полет футбольного мяча
По футбольному мячу ударяют так, что он взлетает под углом 0О = 37° со скоростью 20 м/с. Используя формулы приведенные
i;02sin(290) 8
= 39,2 м
в табл. 3.2 найдем дальность полета <S-