Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
biomech.doc
Скачиваний:
766
Добавлен:
14.02.2016
Размер:
16.68 Mб
Скачать

12.2. Электромагнитное воздействие

Рассмотрим два вида электромагнитных воздействий на орга­низм человека: воздействие электрического тока и воздействие электромагнитных полей.

Действие электрического тока

В электрической сети действие на организм или органы оказы­вает электрический ток, т. е. заряд, протекающий через биологичес­кий объект в единицу времени.

Сопротивление тела человека между двумя касаниями (электро­дами) складывается из сопротивления внутренних тканей и органов и сопротивления кожи. Электросопротивление можно смоделировать

Ч.ПРКТПиЦргкпй пргткт пполотап цр^ц(уц эдд рИС 12 2 СОСТОЯЩЕЙ ИЗ ОР-

зисторов и конденсаторов, отображающих омические (/?) и емкост­ные (С) свойства биологических тканей.

Сопротивление (Rbh) внутренних частей организма слабо зави­сит от общего состояния человека, в расчетах принимают R = 1 кОм (для пути «ладонь — ступня»). Сопротивление кожи #к при про­хождении тока от ее поверхности к внутренним тканям в десятки раз больше /?вн. Поэтому для постоянного и низкочастотного тока (50—60 Гц) сопротивление кожи при точечном контакте является определяющим фактором, который ограничивает ток. (При высо­ких частотах более существенным фактором является внутреннее сопротивление тела). Следовательно, в большинстве ситуаций дей­ствие тока, протекающего через тело, в основном зависит от со­стояния тела в точке контакта. Сухая кожа имеет высокое со­противление, а влажная или мокрая кожа будет обладать низким сопротивлением, так как ионы, находящиеся во влаге, обеспечат прохождение тока в тело. При сухой коже сопротивление между крайними точками тела (ладонь — ступня) может быть равным 105 Ом, а при мокрой коже может составить 1% этого значения. Полное сопротивление тела между влажными руками принимают равным 1500 0м.

Максимальные токи, которые возникнут при контакте с быто­вой электросетью с напряжением 220 В, будут равны:

/ = 220 В/105 Ом = 2,2 мА (сухая кожа),

/ = 220 В/1500 Ом = 146 мА ( мокрая кожа).

Ток 1 мА при прохождении через тело будет едва заметен, но ток 146 мА будет смертелен даже при кратковременном воздействии.

Сопротивление кожи Rk существенно зависит от внутренних и внешних причин (потливость, влажность, наличие раневого по­вреждения). Кроме того, на разных участках тела кожа имеет раз­ную толщину и, следовательно, различное сопротивление. Поэто-му, учитывая изменчивость сопротивления кожи, ее вообще при расчетах не учитывают, принимая /?к = 0. Ток, протекающий через тело, рассчитывают по формуле:

Действие переменного тока на организм оценивается порого­выми значениями.

Порог ощутимого тока — минимальная сила тока, раздра­жающее действие которого ощущает человек.

Эта величина зависит как от индивидуальных особенностей человека, так и от частоты тока, места и площади контакта. У мужчин для участка «предплечье — кисть» на частоте 50 Гц эта величина составляет приблизительно 1 мА. У детей и женщин по­роговые значения несколько меньше.

Порог неотпуекающего тока — минимальная сила тока, вы­зывающая такое сгибание сустава, при котором человек не может самостоятельно освободиться от проводника.

Для мужчин эта величина составляет 10—15 мА.

Наиболее чувствительными к электрическому току частями орга­низма являются мозг, грудные мышцы и нервные центры, которые контролируют дыхание и сердце. Поэтому последствия электротрав­мы зависят от того, какая часть тела оказалась включенной в элек­трическую цепь. Очень опасно, если электрический ток идет через сердце. Опасно и действие тока на кожу лица, где слабо развит рого­вой слой, обеспечивающий высокое сопротивление кожных покро­вов. Низким сопротивлением обладают слизистые оболочки.

Характер электротравмы зависит и от силы тока. Так, при вклю­чении в цепь обеих рук с органами грудной клетки, расположенными между ними, происходит следующее:

Использование токов и полей в лечебных целях

Биологические ткани и органы являются разнородными обра­зованиями: одни из них являются диэлектриками, другие проводни­ками. Значительную часть организма составляют биологические жидкости (электролиты), содержащие большое количество ионов.

Постоянный ток

Под воздействием постоянного электрического поля ионы, со­держащиеся в биологических тканях, приходят в направленное дви­жение. При этом происходит их разделение и изменение их кон­центрации в различных элементах ткани.

Электрофорез — метод, основанный на введении вещества через кожу или слизистые оболочки под действием постоянного тока. Под электроды на кожу кладут прокладки, смоченные соответствующим лекарственным препаратом. Через катод вводят анионы (йод, гепа­рин, бром), а через анод — катионы (Na, Ca, новокаин).

Гальванизация — физиотерапевтический метод, основанный на пропускании постоянного тока напряжением 60—80 В через ткани организма.

Высокочастотные токи

Первичное действие переменного (гармонического) тока и электро­магнитного поля на биологические объекты заключается в следую­щем: а) смещение ионов в растворах электролитов, их разделение, перераспределение; б) изменение поляризации диэлектриков.

Высокочастотные токи. При частотах приблизительно более 500 кГц смещение ионов становится соизмеримым с их смещени­ем в результате молекулярно-теплового движения, поэтому ток или электромагнитная волна не будет вызывать раздражающего дей­ствия. Основным первичным эффектом в этом случае является тепловое воздействие. (Постоянный ток и токи низкой частоты для нагревания тканей не пригодны, так как их использование при больших значениях может привести к электролизу и разрушению).

Преимущества лечебного прогревания ВЧ электромагнитны­ми колебаниями перед грелкой:

  • образование теплоты во внутренних частях организма;

  • подбирая соответствующую частоту, можно осуществлять тер­моселективное воздействие;

  • можно дозировать нагревание, регулируя мощность генератора;

  • возникновение внутримолекулярных процессов, которые при­водят к специфическим воздействиям.

Вычислим количество теплоты q, выделяющееся в единице объема.

Мощность тока, расходуемая на нагревание тканей, определя­ется по формуле Р = PR. Преобразуем ее, считая, что образец био­логической ткани длиной L имеет удельное сопротивление р и кон­тактирует с двумя плоскими электродами площадью S (рис. 12.3).

Пусть плотность тока / одинакова во всех точках ткани и равна

Пропускание тока высокой частоты через ткань используют в следующих физиотерапевтических процедурах.

Диатермия (сквозное прогревание) — получение теплового эф­фекта в глубоколежащих тканях. При диатермии применяют ток частотой 1—2 МГц, напряжением 100—150 В, сила тока 1—1,5 А. При этом сильно нагреваются кожа, жир, кости, мышцы (так как у них наибольшее удельное сопротивление). Меньше нагреваются органы, богатые кровью или лимфой: легкие, печень, лимфоузлы.

Недостаток диатермии — непродуктивное выделение теплоты в слое кожи и подкожной клетчатке.

Местная дарсонвализация. При этом применяют ток часто­той 100—400 кГц, силой тока / = 10—15 мА и напряжением — десятки кВ.

Токи высокой частоты используются для хирургических целей.

Диатермокоагуляция — прижигание, «сваривание» ткани. При этом применяется плотность тока 6—10 мА/мм2, в результа­те чего температура ткани повышается и ткань коагулирует.

Диатермотомия — рассечение тканей при помощи электрода в форме лезвия. При этом плотность тока составляет 40 мА/мм2.

Электрохирургическое воздействие сопровождается меньшими кровопотерями.

Переменное магнитное поле

Если поместить биологическую ткань в переменное магнитное поле (например, возле торца катушки с переменным током), то в результате явления" электромагнитной индукции в проводящих тканях образуются вихревые токи (токи Фуко), нагревающие объект.

Нагревание области тела при действии высокочастотного маг­нитного поля (частота 10—15 МГц) называется индуктотерми-ей. Схема воздействия показана на рис. 12.4.

При индуктотермии больше нагреваются ткани с небольшим удельным сопротивлением. Сильнее будут нагреваться ткани

теплообмен. Задача организма состоит в обеспечении равенства между теплотой, выделяющейся в организме (QBbI ) и теплотой, от­даваемой в окружающую среду (<?отд). ЕслрГпо каким-либо причинам поддержание баланса между выделяемой и отдаваемой теплотами становится невозможным, организм погибает от пе­реохлаждения или от перегрева. Выделение теплоты в организме происходит за счет энергии метаболических процессов и характе­ризуется удельной теплопродукцией количеством тепло­ты, выделяемой единицей массы тела за 1 с. Передача теплоты в окружающую среду осуществляется за счет процессов теплооб­мена, указанных ниже.

Тепловое воздействие на организм человека могут оказывать внешняя среда и процессы, протекающие в самом организме.

воздуха невелики. Коэффициент теплопроводности воды превыша­ет коэффициент теплопроводности воздуха более чем в 20 раз, поэтому в холодной воде человек начинает мерзнуть довольно быстро.

В живом организме ткани имеют различную теплопроводность, и это различие весьма существенно для поддержания теплового режима организма. Значительная теплопроводность мышечной ткани, в которой находится много кровеносных сосудов, позволя­ет быстро переносить тепло от внутренних органов к внешним, пре­дохраняя внутренние органы от перегрева. Напротив, при низких температурах внешней среды слой жировой ткани препятствует быстрой утечке тепла. Аналогичную роль играет волосяной покров и слой воздуха между волосами.

играют основную роль. Напротив, для участков тела, укрытых оде­ждой, конвекционные процессы могут быть сведены к нулю. На­пример, температура поверхности зимней одежды обычно равна температуре окружающего воздуха: Т = Т и в соответствие с (12.13) Я =0.

Тепловой удар. Теплопередача путем теплопроводности и кон­векции происходит в направлении уменьшения температуры. Если температура окружающей среды выше температуры тела, то теп­лопроводность и конвекция создают тепловой поток, направлен­ный внутрь тела, что при определенной длительности приводит к перегреву (тепловой удар). Живой организм не в состоянии функ­ционировать без отдачи тепла наружу.

Теплообмен за счет испарения

Еще один механизм, посредством которого организм отдает те­плоту в окружающую среду, связан с испарением жидкости. Ко­личество теплоты, расходуемой на парообразование, определяет­ся формулой:

где m — масса испарившейся жидкости, г — удельная теплота па­рообразования.

При комнатной температуре и нормальной влажности человек выводит из организма около 0,35 кг влаги в сутки вместе с вы­дыхаемым воздухом и примерно 0,5 кг влаги в виде пота. Удельная теплота парообразования воды равна 2,52106Дж/кг. Поэто­му тепловые потери организма на испарение могут достигать 0,85-2,52106 = 2Т06 Дж в сутки, что составляет 25—30% всей теп­лопродукции организма.

Потоотделение зависит как от температуры внешней среды, так и от ее относительной влажности, так как она в значительной мере обусловливает скорость испарения влаги с поверхности организма. Нормальная относительная влажность среды составляет около 40—60%. При высокой влажности процесс испарения с поверхно­сти тела замедляется, а при 100% прекращается полностью. При высокой температуре окружающей среды это ведет к перегреву ор­ганизма. По этой причине человеку трудно выполнять физическую

работу при повышенной влажности. Влажность менее 40% при­водит к усилению потери влаги организмом, к его обезвоживанию. Это также затрудняет выполнение работы.

Для протекания некоторых процессов важна не относительная, а абсолютная влажность. Так, испарение воды с поверхности аль­веол в легких зависит от абсолютной влажности воздуха, так как из легких выдыхается воздух почти полностью насыщенный паром при температуре примерно 30°С. Количество пара, которым воздух насы­щается в легких, очевидно, зависит от абсолютной влажности вды­хаемого воздуха.

Теплообмен за счет теплового излучения

Еще один способ теплообмена между телом и окружающей сре­дой состоит в испускании и поглощении электромагнитных волн.

Тепловое излучение — электромагнитное излучение, ис­пускаемое веществом и возникающее за счет его внутренней энергии.

Тепловое излучение обусловливается возбуждением частиц веще­ства при соударениях в процессе теплового движения или ускоренным движением зарядов (колебания ионов кристаллической решетки, те­пловое движение свободных электронов и т. д.). Оно возникает при любых температурах и потому присуще всем телам.

И поток излучения, и энергетическая светимость зависят от строения вещества и его температуры: Ф = Ф(Т), Re = Re(T).

Энергетическая светимость /?е, определенная выше, охватыва­ет весь диапазон длин испускаемых волн (теоретически — от нуля до бесконечности). Для того, чтобы показать, как излучаемая энер­гия распределена по этому диапазону, используют специальную величину, называемую спектральной плотностью энергетиче­ской светимости. Обозначим энергию теплового излучения, ис­пускаемую единичной поверхностью тела за 1 с в узком интервале длин волн от X до X+dX через dRe.

Спектральной плотностью энергетической светимости (х) (испускательной способностью) называется отношение энер­гетической светимости в узком участке спектра (dRe) к ширине этого участка (dX):

Для всех реальных тел коэффициент поглощения зависит от длины волны падающего излучения. Из определения следует, что О < а < 1. В общем случае вид функции а(А,, Т) может быть весьма сложным.

Ниже приводятся некоторые простейшие типы поглощения.

Абсолютно черное тело — такое тело, коэффициент погло­щения которого равен единице для всех длин волн: а = 1. Оно по­глощает все падающее на него излучение.

Хотя тел, которые являются абсолютно черными, в природе нет, нетрудно построить достаточно хорошую модель абсолютно черного тела — маленькое отверстие в замкнутой непрозрачной полости со стенками, покрытыми сажей. Луч, попавший в это от­верстие, после многократных отражений от стенок, будет поглощен практически полностью. Кроме того, к абсолютно черному телу близки поглощательные свойства сажи, черного бархата, плати­новой черни и т. п.

Спектральная плотность энергетической светимости абсолютно черного тела обозначается символом е. Ее зависимость от длины волны определяет спектр излучения черного тела, который иг­рает особую роль. С ним связаны спектры других тел.

Абсолютно белое тело — такое тело, коэффициент поглоще­ния которого равен нулю для всех длин волн: а = 0.

Истинно белых тел в природе нет, однако существуют тела, близкие к ним по свойствам в достаточно широком диапазоне. На­пример, зеркало в оптической части спектра отражает почти весь падающий свет.

Серое тело — такое тело, для которого коэффициент поглоще­ния меньше единицы и не зависит от длины волны: а = const < 1.

Некоторые реальные тела обладают этим свойством в опреде­ленном интервале длин волн. Например, «серой» (а = 0,9) можно считать кожу человека в инфракрасной области.

Особенности теплового излучения человека

Доля теплового излучения в теплообмене человека с окружаю­щей средой достигает 45%. Инфракрасное излучение различных участков поверхности тела определяется тремя факторами:

  • особенностями васкуляризации (плотности снабжения орга­нов и тканей сосудами) поверхностей тканей;

  • уровнем метаболических процессов (обмена веществ)в них;

  • различиями в теплопроводности (связанными с развитием жи­ровой клетчатки).

При соблюдении стандартных условий, регистрируемая топо­графия излучения характерна для данного человека. Изменения топографии излучения могут наблюдаться в следующих случаях:

Вследствие сильной температурной зависимости мощности из­лучения (четвертая степень термодинамической температуры) даже небольшое повышение температуры поверхности может вызвать сильное изменение излучаемой мощности. Так, если тем­пература поверхности тела человека измениться на 3 К, т. е. приблизительно на 1%, то мощность измениться на 4%. Такое изменение надежно фиксируется соответствующими приборами (тепловизорами, датчиками на жидких кристаллах и т. п.) У здо­ровых людей распределение температуры по различным точкам поверхности тела достаточно характерно. Различные процессы

(воспаление, изменение кровообращения в венах, например, при охлаждении или нагревании, опухоль) могут изменять местную температуру. Таким образом, регистрация излучения разных участ­ков поверхности тела человека и определение их температуры яв­ляется надежным неинвазивным диагностическим методом.

Воздействие низких температур

Холод — лечебное средство. Под воздействием холода (лед, снег) происходит спазм мелких сосудов, понижается нервная возбудимость, замедляется кровоток, снижается проницаемость мелких сосудов, предотвращается возникновение отеков. Криоком-пресс (rp. kryos — холод, мороз, лед) уменьшает боль при ушибах мягких тканей, суставов, растяжениях связок и других травмах. С лечебной целью на кожу воздействуют процедурой криомассажа, которая осуществляется с использованием жидкого азота. Воздей­ствие на кожу осуществляется при этом с помощью заполненного жидким азотом криодеструктора, на котором имеется тефлоновая насадка с температурой -50 — -60°С. Для криогенных методов создают специальную криогенную аппаратуру.

Защита от тепловых воздействий

Важным вопросом, связанным с работой человека в экстремаль­ных температурных условиях, является организация защиты ор­ганизма от тепловых воздействий. Защита от воздействия высоких температур — сложная задача, требующая комплексного решения. Кроме теплоизоляционных материалов для такой защиты использу­ются металлизированные пленки, хорошо отражающие тепловое излучение, а в ряде случаев и принудительный обдув тела охлаж­денным воздухом. Эффективность использования металлизирован­ных покрытий (например, мелинекса) демонстрирует следующий пример. Испытуемые выполняли работу в помещении с t - 50°С При этом интенсивность облучения составляла 1487 Вт/м2. У оде­тых в хлопчатобумажный комбинезон температура тела повыша­лась в среднем до 39°С, а при использовании одежды с покрытием из мелинекса — до 38°С. При этом применение одежды с покрыти­ем увеличивало время переносимости данных условий на 50—70%.

Для защиты от радиационного нагрева космонавтов, выходив­ших на поверхность Луны, применялся специальный комбинезон, надеваемый на скафандр. Он состоял из нескольких слоев ткани с блестящей металлической поверхностью (до 14 слоев). Внутри скафандра располагались трубки, по которым циркулировала ох­лаждающая жидкость. При разработке конструкции скафандра пришлось учитывать, что теплопродукция различных частей орга­низма неодинакова. Поэтому охлаждающие трубки в защитном костюме располагались так, чтобы 50% их приходилось на ноги, 23% — на руки, 19% — на туловище, 8% — на голову и шею. На рис. 12.6 показан защитный костюм космонавта.

Одежда, предназначенная для защиты от низких температур окружающей среды, должна обеспечивать адекватную вентиля­цию, чтобы под одеждой не конденсировалась влага, создавать изо­лирующую прослойку неподвижного воздуха вокруг тела. Теп­лоизоляционные свойства одежды снижаются при ветре и при

движении. Для защиты от переохлаждения применяют, в част­ности, одежду с локальным подогревом (на спине, пояснице, сто­пах, предплечьях, шее, лице) до 46—51 °С и суммарной мощностью энергопитания 100 Вт. Электрообогреваемая одежда должна не на­гревать поверхность тела человека, а лишь способствовать умень­шению теплопотерь и поддерживать нормальную температуру тела независимо от изменений температуры и скорости движения окру­жающего воздуха, а также интенсивности физической работы. Используют и комбинезоны с водяным подогревом, в которых по системе трубок движется нагретая жидкость, как в отдельныхзле-ментах защитного костюма космонавта.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]