Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
KONSPEKT_LEKTsIJ_rus.doc
Скачиваний:
47
Добавлен:
10.02.2016
Размер:
1.04 Mб
Скачать

2.3.1. Резистивный элемент.

Резистивный элемент условно обозначается на схемах следующим

R

образом: . R – активное сопротивление резистивного элемента. Единица измерения сопротивления – Ом; кОм. Важное свойство резистивного элемента: разность фаз тока и напряжения на резистивном элементе равна нулю: φ = 0. Это иллюстрируется векторной диаграммой:

Резистивный элемент является активным элементом цепи: на нем происходят необратимые преобразования энергии электрического тока в другие виды энергии (например, механическую, тепловую, энергию излучения). В электрические цепи эта энергия не возвращается.

Рис.2.4. Графики тока и напряжения при φ = 0

2.3.2. Емкостный элемент.

Емкостный элемент условно обозначается на схемах

Конструктивно емкостный элемент (конденсатор) представляет собой две пластины, выполненные из проводящего материала, разделенные тонким слоем диэлектрика. Основная характеристика емкостного элемента С – электроемкость конденсатора. Единица измерения электроемкости – Ф (фарада). На практике чаще используются 1мкФ (микрофарада, равная 10Ф) и пикофарада (10Ф).

Несмотря на то, что пластины конденсатора разделены диэлектриком, при переменном напряжении ток в цепи с конденсатором существует. Емкостный элемент оказывает сопротивление переменному току. Это сопротивление обозначается Хс и называется емкостным сопротивлением. Это сопротивление зависит от частоты переменного тока f (обратно пропорционально частоте):

(2.11)

Из формулы (2.11) видно, что когда f, то есть при постоянном напряжении, , поэтому в цепях постоянного тока наличие конденсатора вызывает разрыв цепи, т. е. ток отсутствует.

На емкостном элементе разность фаз тока и напряжения φC = -900, то есть напряжение отстает от тока на четверть периода.

Рис.2.5 Графики тока и напряжения при φ = -900

Векторная диаграмма для емкостного элемента выглядит так:

2.3.3. Индуктивный элемент.

Индуктивностью L теоретически обладают все проводники с током. Но во многих случаях эта индуктивность так мала, что ею можно пренебречь. У катушек и обмоток, состоящих из большого количества витков провода, индуктивность достигает значительной величины.

2.3.3.1. Идеальный индуктивный элемент.

Рассмотрим идеальный индуктивный элемент, т.е. такую катушку, активное сопротивление которой равно нулю. На схемах идеальный индуктивный элемент условно обозначается

Основная характеристика этого элемента называется индуктивностью и обозначается L. Основная единица измерения индуктивности – Генри (Гн, Н), производная единица – миллигенри (мГн, mH), равная 10-3 Генри.

Сопротивление, которое индуктивный элемент оказывает переменному току, называется индуктивным сопротивлением и обозначается ХL.

ХL=2 (2.12)

Индуктивное сопротивление элемента прямо пропорционально частоте переменного тока и индуктивности. Для постоянного тока f, поэтому ХL =0.

Разность фаз тока и напряжения на идеальном индуктивном элементе φL= 900, то есть ток отстает от напряжения на четверть периода.

Рис. 2.6 Графики тока и напряжения при φ= 900

Векторная диаграмма тока и напряжения на идеальном индуктивном элементе (φL= 900) выглядит так:

Идеальный индуктивный элемент и емкостный элемент являются реактивными, а их сопротивления ХL и ХС называются реактивными сопротивлениями. На них происходят обратимые преобразования энергии электрического тока в энергию электромагнитного поля и обратно. На индуктивном элементе энергия электрического тока в одни промежутки времени расходуется на создание магнитного поля вокруг катушки. В другие промежутки времени это магнитное поле исчезает, и его энергия превращается в энергию электрического тока. Аналогично, на емкостном элементе энергия электрического тока в определенные промежутки времени расходуется на создание электрического поля конденсатора, а в другие промежутки времени электрическое поле исчезает, а его энергия преобразуется в энергию электрического тока.

За счет использования реактивных элементов невозможно совершить какую-либо работу (например, заставить вращаться станок, нагреть что-нибудь). Наличие реактивных элементов L и С в цепи приводит к возникновению разности фаз тока и напряжения в цепи переменного тока.

ЛЕКЦИЯ 3.

2.2.3.2. Реальный индуктивный элемент.

Реальный индуктивный элемент на схемах иногда обозначается так:

Следует отметить, что разделение на R и L – условное, оно лишь подчеркивает, что реальный индуктивный элемент – это катушка из провода, у которого есть активное сопротивление.

Полное сопротивление реального индуктивного элемента определяется формулой:

, (2.13)

где Rк- активное сопротивление элемента, ХL – индуктивное сопротивление.

Разность фаз тока и напряжения на реальном индуктивном элементе положительна (ток отстает от напряжения) и может быть рассчитана по формуле:

(2.14)

Векторная диаграмма для реального индуктивного элемента выглядит так:

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]