Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ТУС.docx
Скачиваний:
107
Добавлен:
08.02.2016
Размер:
1.68 Mб
Скачать

Элементы затопленных судовых помещений

К элементам затопленных судовых помещений относятся:

v — объем воды в отсеке;

xv, yv, zv, координаты центра величины (ЦВ) объема v;

S - площадь свободной поверхности воды в отсеке;

xs, ys, zs — координаты центра тяжести (ЦТ) площади S;

ix, iy, iz  собственные (центральные) моменты и цен­тробежный момент инерции площади S относительно продольной и поперечной осей судна.

При посадке судна по наклонную ватерлинию вели­чины S, xs, ys, zs, ix, iy, iz относятся к проекции свободной поверхности воды на основную плоскость (ОП). Для судовых помещений 4 категории дополнительными характеристиками являются u и рв — объем воздушной подушки и давление в ней.

Различают теоретические объемы Vт судовых помещений и фактические V, которые зависят от загрузки судна и  расположения в них  судовых механизмов.

Отношение вместимо­сти судовые помещения к его теоретическому объему m=V/ Vт называется  коэффициентом проницаемости.

Часть 5 Правил Морского Регистра Судоходства устанавливает следующие значения коэффициентов проницаемости отдельных судовых помещений

 

Помещение

Коэффициент проницаемости

Судовые механизмы, электростанции, технологическое оборудование

0,85

Помещения непассажирских судов, занятых грузами или запасами

0,60

Помещения, загруженные порожней колесной техникой, жилые помещения

0,95

Пустые и балластные цистерны

0,98

Грузовые помещения накатных судов

0,80


  1. Начальная остойчивость судна. Условия остойчивости судна.

Остойчивостью называется способность судна, отклоненного от положения равновесия, возвращаться к нему после прекращения действия сил, вызвавших отклонение.

Наклонения судна могут происходить от действия набегающих волн, из-за несимметричного затопления отсеков при пробоине, от перемещения грузов, давления ветра, из-за приема или расходования грузов.

Наклонения судна в поперечной плоскости называют кренома в продольной — дифферентомУглы, образующиеся при этом, обозначают соответственно θ и ψ

Остойчивость, которую судно имеет при продольных наклонениях, называют продольнойОна, как правило, довольно велика, и опасности опрокидывания судна через нос или корму никогда не возникает.

Остойчивость судна при поперечных наклонениях называется поперечнойОна является наиболее важной характеристикой судна, определяющей его мореходные качества.

Различают начальную поперечную остойчивость при малых углах крена (до 10—15°) и остойчивость при больших наклонениях, так как восстанавливающий момент при малых и больших углах крена определяется различными способами.

Начальная остойчивость. Если судно под действием внешнего кренящего момента МКР (например, давления ветра) получит крен на угол θ (угол между исходной WL0 и действующей WL1 ватерлиниями), то, вследствие изменения формы подводной части судна, центр величины С переместится в точку С1 (рис. 5). Сила поддержания yV будет приложена в точке C1 и направлена перпендикулярно к действующей ватерлинии WL1Точка М находится на пересечении диаметральной плоскости с линией действия сил поддержания и называется поперечным метацентромСила веса судна Р остается в центре тяжести G. Вместе с силой yV она образует пару сил, которая препятствует наклонению судна кренящим моментом МКР. Момент этой пары сил называется восстанавливающим моментом МВВеличина его зависит от плеча l=GK между силами веса и поддержания наклоненного судна: MВ = Pl =Ph sin θ, где — возвышение точки М над ЦТ судна G, называемое поперечной метацентрической высотой судна.

 

Рис. 5. Действие сил при крене судна.

 

Из формулы видно, что величина восстанавливающего момента тем больше, чем больше h. Следовательно, метацентрическая высота может служить мерой остойчивости для данного судна.

Величина данного судна при определенной осадке зависит от положения центра тяжести судна. Если грузы расположить так, чтобы центр тяжести судна занял более высокое положение, то метацентрическая высота уменьшится, а вместе с ней — плечо статической остойчивости и восстанавливающий момент, т. е. остойчивость судна понизится. При понижении положения центра тяжести метацентрическая высота увеличится, остойчивость судна повысится.

Так как для малых углов их синусы приближенно равны величине углов, измеренных в радианах, то можно записатьМВ = Рhθ.

Метацентрическую высоту можно определить из выражения h = r + zczgгде zc— возвышение ЦВ над ОЛ; — поперечный метацентрический радиус, т. е. возвышение метацентра над ЦВ; zg—возвышение ЦТ судна над основной.

На построенном судне начальную метацентрическую высоту определяют опытным путем — кренованиемт. е. поперечным наклонением судна путем перемещения груза определенного веса, называемого крен-балластом.

Остойчивость на больших углах крена. По мере увеличения крена судна восстанавливающий момент сначала возрастает, затем уменьшается, становится равным нулю и далее не только не препятствует наклонению, а наоборот, способствует ему (рис. 6).

 

Рис. 6. Диаграмма статической остойчивости.

 

Так как водоизмещение для данного состояния нагрузки постоянно, то восстанавливающий момент изменяется только вследствие изменения плеча поперечной остойчивости lст. По расчетам поперечной остойчивости на больших углах крена строят диаграмму статической остойчивостипредставляющую собой график, выражающий зависимость lстот угла крена. Диаграмму статической остойчивости строят для наиболее характерных и опасных случаев нагрузки судна.

Пользуясь диаграммой, можно определить угол крена по известному кренящему моменту или, наоборот, по известному углу крена найти кренящий момент. По диаграмме статической остойчивости можно определить начальную метацентрическую высоту. Для этого от начала координат откладывают радиан, равный 57,3°, и восстанавливают перпендикуляр до пересечения с касательной к кривой плеч остойчивости в начале координат. Отрезок между горизонтальной осью и точкой пересечения в масштабе диаграммы и будет равен начальной метацентрической высоте.

При медленном (статическом) действии кренящего момента состояние равновесия при крене наступает, если соблюдается условие равенства моментов, т. е. МКР = МВ (рис. 7).

 

Рис. 7. Определение угла крена от действия статически (а) и динамически (б) приложенной силы.

 

При динамическом действии кренящего момента (порыв ветра, рывок буксирного троса на борт) судно, наклоняясь, приобретает угловую скорость. Оно по инерции пройдет положение статического равновесия и будет продолжать крениться до тех пор, пока работа кренящего момента не станет равной работе восстанавливающего.

Величину, угла крена при динамическом действии кренящего момента можно определить по диаграмме статической остойчивости. Горизонтальную линию кренящего момента продолжают вправо до тех пор, пока площадь ОДСЕ (работа кренящего момента) не станет равной площади фигуры ОБЕ (работа восстанавливающего момента). При этом площадьОАСЕ является общей, поэтому можно ограничиться сравнением площадей ОДА и ABC.

Если же площадь, ограниченная кривой восстанавливающих моментов, окажется недостаточной, то судно опрокинется.

Остойчивость морских судов должна отвечать требованиям Регистра, в соответствии с которыми необходимо выполнение условия (так называемого критерия погоды): К=Mопрмин / Мднmax ≥ 1» где Mопрмин — минимальный опрокидывающий момент (минимальный динамически приложенный кренящий момент с учетом качки), под действием которого судно еще не потеряет остойчивость; Мднmax — динамически приложенный кренящий момент от давления ветра при наихудшем в отношении остойчивости варианте загрузки.

В соответствии с требованиями Регистра максимальное плечо диаграммы статической остойчивости lmax должно быть не менее 0,25 м для судов длиной 85 м и не менее 0,20 м для судов более 105 м при угле крена θ более 30°. Угол заката диаграммы (угол, при котором кривая плеч остойчивости пересекает горизонтальную ось) для всех судов должен быть не менее 60°.

Влияние жидких грузов на остойчивость. Если цистерна заполнена не доверху, т. е. в ней имеется свободная поверхность жидкости, то при наклонении жидкость перельется в сторону крена и центр тяжести судна сместится в ту же сторону. Это приведет к уменьшению плеча остойчивости, а следовательно, к уменьшению восстанавливающего момента. При этом чем шире цистерна, в которой имеется свободная поверхность жидкости, тем значительнее будет уменьшение поперечной остойчивости. Для уменьшения влияния свободной поверхности целесообразно уменьшать ширину цистерн и стремиться к тому, чтобы во время эксплуатации было минимальное количество цистерн со свободной поверхностью жидкости.

Влияние сыпучих грузов на остойчивость. При перевозке сыпучих грузов (зерна) наблюдается несколько иная картина. В начале наклонения груз не перемещается. Только когда угол крена превысит угол естественного откоса, груз начинает пересыпаться. При этом пересыпавшийся груз не вернется в прежнее положение, а, оставшись у борта, создаст остаточный крен, что при повторных кренящих моментах (например, шквалах) может привести к потере остойчивости и опрокидыванию судна.

Для предотвращения пересыпания зерна в трюмах устанавливают подвесные продольные полупереборки —шифтинг-бордсы либо укладывают поверх насыпанного в трюме зерна мешки с зерном (мешкование груза).

Влияние подвешенного груза на остойчивость. Если груз находится в трюме, то при подъеме его, например краном, происходит как бы мгновенный перенос груза в точку подвеса. В результате ЦТ судна сместится вертикально вверх, что приведет к уменьшению плеча восстанавливающего момента при получении судном крена, т. е. к уменьшению остойчивости. При этом уменьшение остойчивости будет тем больше, чем больше масса груза и высота его подвеса.

Допустим, что судно, находящееся в прямом положении равновесия и плавающее по ватерлинию ВЛ, в результате действия внешнего кренящего момента Мкр накренилось так, что исходная ватерлиния ВЛ с новой действующей ватерлинией В1Л1 образует малый угол θ. Вследствие изменения формы погруженной в воду части корпуса распределение гидростатических сил давления, действующих на эту часть корпуса, также изменится. Центр величины судна переместится в сторону крена и перейдет из точки С в точку С1. Сила поддержания D', оставаясь неизменной, будет направлена вертикально вверх перпендикулярно новой действующей ватерлинии, а ее линия действия пересечет ДП в первоначальном поперечном метацентре m. Положение центра тяжести судна остается неизменным, а сила веса Р будет перпендикулярна новой ватерлинии В1Л1. Таким образом, силы Р и D', параллельные друг другу, не лежат на одной вертикали и, следовательно, образуют пару сил с плечом GK, где точка К - основание перпендикуляра, опущенного из точки G на направление действия силы поддержания. Пара сил, образованная весом судна и силой поддержания, стремящаяся возвратить судно в первоначальное положение равновесия, называется восстанавливающей парой, а момент этой пары - восстанавливающим моментом Mθ. Вопрос об остойчивости накрененного судна решается направлением действия восстанавливающего момента. Если восстанавливающий момент стремится вернуть судно в первоначальное положение равновесия, то восстанавливающий момент положителен, остойчивость судна также положительна — судно остойчиво. На рис. 1 показано расположение сил, действующих на судно, которое соответствует положительному восстанавливающему моменту. Нетрудно убедиться, что такой момент возникает, если ЦТ лежит ниже метацентра.

Нa рис. 2 показан противоположный случай, когда восстанавливающий момент отрицателен ( ц.т. лежит выше метацентра). Он стремится еще больше отклонить судно из положения равновесия, т.к. направление его действия совпадает с направлением действия внешнего кренящего момента Мкр . В этом случае судно неостойчиво. Теоретически можно допустить, что восстанавливающий момент при наклонении судна равен нулю, т.е. сила веса судна и сила поддержания располагаются на одной вертикали, как это показано на рис. 3.

Отсутствие восстанавливающего момента приводт к тому, что после прекращения действия кренящего момента судно остается в наклоненном положении т.е. судно находится в безразличном равновесии. Таким образом, по взаимному положению поперечного метацентра m и Ц.Т. G можно судить о знаке восстанавливающего момента или, иными словами, об остойчивости судна. Так, если поперечный метацентр находится выше центра тяжести (рис 1), то судно остойчиво; Если поперечный метацентр расположен ниже центра тяжести или совпадает с ним (рис.2, 3) судно неостойчиво. Отсюда возникает понятие метацентрической высоты: поперечной метацентрической высотой называется возвышение поперечного метацентра над центром тяжести судна в начальном положении равновесия. Поперечная мегацентрическая высота (рис. 1) определяется расстоянием от центра тяжести (т. G), до поперечного метацентра (т. m), т.е. отрезком mG . Этот отрезок является постоянной величиной, т.к. и Ц.Т. ,и поперечный метацентр не изменяют своего положения при малых наклонениях. В связи с этим его удобно принимать в качестве критерия начальной остойчивости судна. Если поперечный метацентр будет находиться выше центра тяжести судна, то поперечная метацентрическая высота считается положительной. Тогда условие остойчивости судна можно дать в следующей формулировке: Судно остойчиво, если его поперечная метацентрическая высота положительна. Такое определение удобно тем, что оно позволяет судить об остойчивости судна, не рассматривая его наклонения, т.е. при угле крена равном нулю, когда восстанавливающий момент вообще отсутствует. Чтобы установить, какими данными необходимо располагать для получения значения поперечной метацентрической высоты, обратимся к рис. 4, на котором показано относительное расположение центра величины С, центра тяжести G и поперечного метацентра m судна, имеющего положительную начальную поперечную остойчивость. Из рисунка видно, что поперечная метацентрическая высота h может быть определена по одной из следующих формул:

h = r ± a;    h = ZC + r - ZG;     h = Zm - ZG.

Поперечная метацентрическая высота определяется с помощью последних двух равенств. Аппликата поперечного метацентра Zm может быть найдена по метацентрической диаграмме. Основные трудности при определении поперечной метацентрической высоты судна возникают при определении аппликаты центра тяжести ZG.

  1. Определение параметров посадки и остойчивости судна при перемещении, принятии и снятии малых грузов.

В результате приема на судно малого груза массой т в точку с координатами х, у (рис. 1.12) возникнет сила веса груза ρ = mg и посадка судна изменится: увеличится его средняя осадка и в общем случае возникнут крен и дифферент.

Предположим, однако, что судно удерживается от крена и дифферента некоторым условным (воображаемым) внешним моментом и рассмотрим здесь только изменение осадки судна δd. В результате увеличения осадки в воду войдет дополнительный объем δV между ватерлиниями ВЛ и В1Л1 и возникнет дополнительная сила плавучести γδV, приложенная в ЦТ этого объема и равная силе веса груза р. Поскольку предполагается, что масса груза мала по сравнению с массой судна, то можно считать, что борта судна в пределах изменения осадки вертикальны. В этом случае вошедший в воду объем δV можно определить как объем цилиндрического тела, основанием которого служит площадь ватерлинии S, а высотой - искомое приращение осадки δd

δV = Sδd. (1.19)

Рис. 1.11. Строевая по шпангоутам Рис. 1.12. Изменение осадки судна при приеме малого груза

Для определения приращения осадки δd используем условие равновесия судна после приема груза, выражающееся равенством дополнительных сил веса и плавучести

p = γδν. (1.20)

Подставив выражение (1.20) в уравнение (1.19) и решив последнее относительно δd, получим

δd = p/(γS) = m/(ρS). (1.21)

Если груз снимается с судна, то его массу т подставляют в формулу (1.21) с отрицательным знаком; следовательно, приращение осадки в этом случае будет также отрицательным, т. е. осадка судна уменьшится на величину δd.

На рис. 1.12 видно, что в общем случае силы p и γδV составляют пару сил, момент которой вызовет крен и дифферент свободно плавающего судна. Этот момент будет равен нулю только в том случае, если эти силы будут действовать по одной вертикали. При допущении о прямобортности судна в пределах изменения осадки ЦТ объема δV будет расположен на одной вертикали с ЦТ площади ватерлинии ВЛ. Следовательно, при приеме или снятии груза судно нe получит крена или дифферента, если ЦТ принятого (снятого) груза будет расположен на одной вертикали с ЦТ площади ватерлинии. Положение груза, отвечающее этому условию, показано на рис. 1.12 штриховой линией.

Формула (1.21) является точной для прямобортного судна и приближенной для непрямобортного. В последнем случае она определяет приращение осадки с достаточной для практических целей точностью, если масса принимаемого или снимаемого груза не превышает 15-20 % массы судна.

В практических расчетах часто используют также величину q - число тонн на 1 см осадки. Если известно q, то приращение осадки выразится формулой

δd = m/q. (1.22)

Сравнивая формулы (1.21) и (1.22), видим, что величина q пропорциональна площади ватерлинии S и связана с ней зависимостью

q = ρS/100. (1.23)

Зная площади ватерлиний при различных осадках и принимая среднюю (расчетную) плотность морской воды ρ

равной 1,025 т/м3, с помощью этой формулы можно построить кривую q=f(d). Однако при наличии строевой по ватерлинии строить такую кривую нет надобности, так как достаточно снабдить строевую по ватерлиниям дополнительной шкалой для q.

  1. Определение посадки и остойчивости судна при приеме, снятии больших грузов.

Если масса принимаемого на судно или снимаемого с судна груза превышает 15- 20 % массы самого судна, то формулы (1.21) и (1.22) не обеспечивают необходимой точности расчета. В таких случаях изменение осадки определяют графически, пользуясь грузовым размером Δ =f(d).

Пусть начальное водоизмещение судна (до приема груза) равно Δ0, а соответствующая ему осадка - d0 (рис. 1.13). Отложим значение массы принятого груза т в масштабе оси абсцисс вправо от точки Δ0 и через полученную точку проведем вертикаль. Точку В пересечения этой вертикали с грузовым размером снесем по горизонтали на ось ординат, где по шкале d найдем новую осадку судна, а следовательно, и приращение осадки δd. В случае снятия груза его массу откладывают по оси абсцисс не вправо, а влево от точки, отвечающей первоначальному водоизмещению Δ0.

Рис. 1.13. График изменения осадки судна при приеме или снятии большого груза

  1. Влияние на остойчивость и непотопляемость затопления отсеков различной категории

Непотопляемость — способность судна оставаться на плаву и не опрокидываться при повреждении его корпуса и затоплении одного или нескольких отсеков

Для обеспечения непотопляемости недостаточно сохранять положительную плавучесть. Судно должно еще плавать не опрокидываясь, иначе возможно потопление даже при положительной плавучести. Поэтому требованием непотопляемости является сохранение остойчивости до полного исчерпания запаса плавучести. Практически это означает, что допускается некоторое снижение плавучести, если оно позволяет сохранить остойчивость и посадку.

В практике судовождения непотопляемость — это способность судна при определенном повреждении отвечать требованиям классификационного общества в отношении плавучести и остойчивости. Например: неуменьшение поперечной метацентрический высоты ниже 0,3 м, сохранение 35 % запаса плавучести и крена не более 2° при нарушении водонепроницаемости любого отсека. Наиболее строгие требования предъявляются к непотопляемости пассажирских судов.