
- •10. Матеріа́льна то́чка. Визначення положення мт у просторі, радіус-вектор.
- •11.Кінематичні рівняння поступального і обертального рухів.
- •12 Основні характеристики руху. Миттєва швидкість тіла. Середня швидкість. Тангенціальне і нормальне(доцентрове) прискорення
- •13. Охарактеризувати види руху та навести відповідні рівняння
- •15.Маса. Зв’язок маси тіла з його вагою. Одиниці виміру маси та ваги тіла.
- •16. Маса як мірило інертності тіла. Другий закон Ньютона.
- •17.Терези. Типи терезів та вимірювання ваги.
- •18. Густина, як фізична характеристика речовини. Методи визначення густини.
- •19. Інерціальні системи. Перший закон Ньютона.
- •20.Сила. Однини ці вимірювання сили. Прояви дії сили. Другий закон Ньютона.
- •21.Центр інерції механічної системи.Особливості руху центра інерції замкненої механічної системи.
- •22.Імпульс мт та повний імпульс механічної ситеми. Закон збереження імпульсу.
- •23. Третій закон Ньютона: закон дії та протидії
- •24. Робота та потенціальна енергія. Зв'язок сили з потенціальною енергією матер. Точки. Розрахунок роботи.
- •25.Момент інерції твердого тіла. Мотенти інерції тіл найпростішої форми.
- •26. Теорема Штейнера
- •27.Момент сили
- •28.Правило важелів Архімеда
- •29.Дисипативна енергія
- •30.Пружна деформація. Закон Гука. Модуль Юнга. Енергія деформованої пружини.
- •31.Робота та потенціальна енергія. Зв'язок сили з потенціальною енергією мт . Розрахунок роботи.
- •33.Однорідне силове поле. Рух мт в однорідному силовому полі.
- •34.Сила тертя. Сухе та вязке тертя. Рух твердого тіла по похилій площині.
- •35.Гідростатика.Фізичні властивості рідин.
- •36. Закон паскаля:
- •37. Закон архімеда
- •38. Принцип дії гідравлічного преса
- •39. Гідродинаміка. Теорема про неперервність течії
- •40. Рівняння Бернуллі та його наслідки
- •41.Рух реальної рідини. Сила внутрішнього тертя, коефіцієнт в’язкості.
- •42. Ламіна́рна та турбулентна течія. Число Рейнольдса. Умови ламінарної течії
- •43. Теорія подібності та її використання у фізико-технологічних процесах
- •44.Предмет дослідження молекулярної фізии. Будова речовини. Визначенння вуглецевих одиниць.
- •45.Моль речовини. Число Авогадро.Характерний розмір молекул.
- •52. Імовірність розподілу молекул за швидкостями.
- •53. Теорія хімічної будови Бутлерова
- •54.Структурна і просторова ізомерія.Фізичні методи визначенння структури молекул.
- •55.Основні типи молекулярних зв’язків – іонний та ковалентний. Квантово-механічне пояснення ковалентного зв’язку.
- •56.Сили міжмолекулярної взаємодії. Сили Ван-дер-Вальса. Ізотерми Ван-дер-Вальса.
- •57. Явище переносу в газах
- •58. Нульове начало термодинаміки.
- •59.Внутрішня енергія ідеального газу.
- •60.Перший початок термодинаміки. Робота газу при сталому тиску.
- •61.Теплоємність газу за сталого об’єму та сталого тиску.
- •62.Закон Дюлонга та Пті.
- •63.Адіабатичний процес. Рівняння адіабати.
- •64.Цикл Карно. Коефіцієнт корисної дії теплової машини.
- •65.Теплові властивості реальних середовищ. Температурна діаграма процесу нагрівання речовини.
- •66.Питома теплота плавлення та пароутворення речовини.
- •67. Робота теплових двигунів, холодильників.
- •69. Третє начало термодинаміки. Температурна шкала.
- •70.Пояснити причини утворення поверхневого шару рідини.
- •71.Сила поверхневого натягу.
- •72.Силове й енергетичне тлумачення коефіцієнту поверхневого натягу рідини.
- •73.Капілярні явища. Явище змочування і незмочування.
- •74.Вивести формулу розрахунку висоти підняття рідини в капілярі.
- •75.Формула Лапласа і її характеристика.
- •76.Поверхнеко активні(пар) і поверхнево неактивні речовини. Їх властивості і характеристика.
- •77.Рідкі кристали. Характеристика .Основні властивості , використання.
- •78.Полімери- загальна характеристика речовини, її використання.
- •79. Пояснити сутність фазових перходів першого та другого роду. Метастабільного стану.
- •80.Квантова рідина та її характеристика. Надплинність.
- •82.Електризація тіл, два роди зарядів.
- •83.Поле точкового заряду. Силові лінії електричного поля. Геометрична інтерпретація полів силовими лініями.
- •84.Дискретінсть заряду, закон збереження заряду.
- •85. Закон Кулона
- •86. Напруженість електростатичного поля. Принцип суперпозиції електростатичного поля.
- •87. Електричний диполь. Дипольний момент. Поле диполя.
- •88. Теорема Гауссата її застосування до тіл простої геометричної форми.
- •90. Потенціал. Різниця потенціалів. Еквіпотенціальні поверхні. Одиниця вимірювання потенціалу.
- •91. Поведінка провідників в електростатичному полі. Електроємність провідників. Одиниці вимірювання електроємності.
- •92.Конденсатори. Ємність плаского, сферичного конденсаторів.
- •93. Паралельне та послідовне з’єднання конденсаторів
- •94.Енергія плоского конденсатора
- •95. Дослід Міллікена-Йоффе
- •96.Класифікація матеріалів за електричними властивостями. Провіднки,діелектрики, напівпровідники та надпровідники.
- •97.Електричний диполь. Дипольний момент. Поле диполя.
- •98.Теорема Гауса
- •99.Полярні і неполярні молекули. Поляризація речовини.
- •100.Вплив речовини діелектрика на електричне поле.
- •101.Основна задача електростатики
- •102.П'єзоелектрики, сегнетоелектрики, піроелектрики.
- •103.Робота, енергія, об’ємна густина енергії.
- •104.Постійний електричний струм.Середня швидкість спрямованого руху електронів.
- •111.Сторонні сили. Електрорушійна сила
- •112.Робота, потужність електричного струму. Закон Джоуля-Ленца.
- •113.Електричний струм у металах
- •114.Класична електронна теорія металів.
- •115.Квантова теорія металів.
97.Електричний диполь. Дипольний момент. Поле диполя.
Однією
із простих систем точкових зарядів є
електричний
диполь
– сукупність двох однакових за абсолютним
значенням і протилежним за знаком
точкових зарядів +q і –q, розміщеній на
деякій відстані .
Величину
називають плечем
диполя.
Якщо відстань між зарядами не змінюється,
то такий диполь називають
жорстким.
Якщо довжина плеча диполя
мала порівняно з відстанню
від диполя до точки спостереження, то
такий диполя називають точковим.
Прикладом точкових диполів є полярні
молекули.
Основною
характеристикою диполя є електричний
дипольний момент
–
вектор, що чисельно дорівнює добутку
заряду на плече і напрямлений від
негативного заряду до позитивного,
тобто
[Кл*м].
Поле диполя:
Знайдемо
електричне поле диполя як фізичного
об’єкта.
Вектор
напруженості поля диполя:
Задавши
дипольний момент
і координати довільної точки ( її
радіус-вектор
і кут
між радіус-вектором і напрямком вектора
напруженості електричного поля), можемо
знайти поле диполя в цій точці :
;
.
98.Теорема Гауса
Теорема
Гауса :
потік вектора E через замкнуту поверхню
S дорівнює алгебраїчній сумі зарядів,
укладених усередині цієї поверхні,
поділеній на електричну постійну.
Теорема Гауса пов’язує потік вектора напруженості електростатичного поля крізь довільну замкнену поверхню із зарядом, який охоплюється цією поверхнею.
99.Полярні і неполярні молекули. Поляризація речовини.
В полярних молекулах електричні центри позитивних і негативних зарядів не збігаються: один кінець молекули несе позитивний заряд, другий – негативний.
Полярні речовини хімічно активні і при розчині у воді дисо-ціюють на йони. До полярних речовин належать неорганічні кислоти і їх солі, вода та ряд природних мінералів. Тверді полярні речовини гідрофільні.
Неполярні молекули –молекули у яких «центри ваги» позитивних і негативних зарядів збігаються, а отже дипольний момент дорівнює нулеві.
Поляризація - це процес, що складається в обмеженому зсуві чи орієнтації зв'язаних зарядів у діелектрику при впливі на нього зовнішнього електричного поля. Позитивні заряди зміщуються в напрямку вектора напруженості поля Е,негативні - у зворотному напрямку.
Поляризáція діелектр́ична — виникнення дипольного електричного моменту у діелектрика, поміщеного у зовнішнє електричне поле; явище зміщення електричних зарядів діелектрика під впливом зовнішнього електричного поля зумовлює виникнення внутрішнього електричного поля з протилежним напрямком, наслідком чого є зменшення прикладеного поля.
*Неполярні діелектрики. До цієї групи відносять діелектрики, що не містять електричних диполів, здатних до переорієнтації в зовнішнім електричному полі. Неполярним діелектрикам властива в основному електронна поляризація. Вони застосовуються як високоякісні електроізоляційні матеріали в техніці високих і надвисоких частот. До них відносять полістирол, поліетилен, бензол, повітря й ін.
Полярні діелектрики. У цю групу входять діелектрики, що містять електричні диполі, що здатні до переорієнтації в зовнішнім електричному полі. У полярних діелектриках крім електронної спостерігають і дипольно-релаксаційну поляризацію. Вони мають трохи знижені електричні властивості в порівнянні з неполярними діелектриками і застосовуються як електроізоляційні матеріали в області низьких частот. До них можна віднести полівінілхлорид, епоксидні смоли, лавсан, органічне скло і ін.