
- •Why CFD is Important for Modeling
- •How the CFD Module Helps Improve Your Modeling
- •Model Builder Options for Physics Feature Node Settings Windows
- •Where Do I Access the Documentation and Model Library?
- •Typographical Conventions
- •Quick Start Guide
- •Modeling Strategy
- •Geometrical Complexities
- •Material Properties
- •Defining the Physics
- •Meshing
- •The Choice of Solver and Solver Settings
- •Coupling to Other Physics Interfaces
- •Adding a Chemical Species Transport Interface
- •Equation
- •Discretization
- •Transport Feature
- •Migration in Electric Field
- •Reactions
- •Reactions
- •Initial Values
- •Initial Values
- •Boundary Conditions for the Transport of Concentrated Species Interface
- •Mass Fraction
- •Mass Fraction
- •Flux
- •Inflow
- •Inflow
- •No Flux
- •Outflow
- •Flux Discontinuity
- •Flux Discontinuity
- •Symmetry
- •Open Boundary
- •Physical Model
- •Transport Properties
- •Model Inputs
- •Fluid Properties
- •Diffusion
- •Migration in Electric Field
- •Diffusion
- •Model Inputs
- •Density
- •Diffusion
- •Porous Matrix Properties
- •Porous Matrix Properties
- •Initial Values
- •Initial Values
- •Domain Features for the Reacting Flow, Concentrated Species Interface
- •Boundary Conditions for the Reacting Flow, Concentrated Species Interface
- •Reacting Boundary
- •Inward Flux
- •Physical Model
- •Transport Properties
- •Fluid Properties
- •Migration in Electric Field
- •Porous Matrix Properties
- •Initial Values
- •Domain Features for the Reacting Flow, Diluted Species Interface
- •Boundary Conditions for the Reacting Flow, Diluted Species Interface
- •Pair and Point Conditions for the Reacting Flow, Diluted Species Interface
- •Multicomponent Mass Transport
- •Multicomponent Diffusion: Mixture-Average Approximation
- •Multispecies Diffusion: Fick’s Law Approximation
- •Multicomponent Thermal Diffusion
- •References for the Transport of Concentrated Species Interface
- •Domain Equations
- •Combined Boundary Conditions
- •Effective Mass Transport Parameters in Porous Media
- •Selecting the Right Interface
- •The Single-Phase Flow Interface Options
- •Laminar Flow
- •Coupling to Other Physics Interfaces
- •The Laminar Flow Interface
- •Discretization
- •The Creeping Flow Interface
- •Discretization
- •Fluid Properties
- •Fluid Properties
- •Mixing Length Limit
- •Volume Force
- •Volume Force
- •Initial Values
- •Initial Values
- •The Turbulent Flow, Spalart-Allmaras Interface
- •The Rotating Machinery, Laminar Flow Interface
- •Rotating Domain
- •Rotating Domain
- •Initial Values
- •Initial Values
- •Rotating Wall
- •Wall
- •Boundary Condition
- •Interior Wall
- •Boundary Condition
- •Inlet
- •Boundary Condition
- •Velocity
- •Pressure, No Viscous Stress
- •Normal Stress
- •Outlet
- •Boundary Condition
- •Pressure
- •Laminar Outflow
- •No Viscous Stress
- •Vacuum Pump
- •Symmetry
- •Open Boundary
- •Boundary Stress
- •Boundary Condition
- •Periodic Flow Condition
- •Flow Continuity
- •Pressure Point Constraint
- •Non-Newtonian Flow—The Power Law and the Carreau Model
- •Theory for the Pressure, No Viscous Stress Boundary Condition
- •Theory for the Laminar Inflow Condition
- •Theory for the Laminar Outflow Condition
- •Theory for the Slip Velocity Wall Boundary Condition
- •Theory for the Vacuum Pump Outlet Condition
- •Theory for the No Viscous Stress Condition
- •Theory for the Mass Flow Inlet Condition
- •Turbulence Modeling
- •Eddy Viscosity
- •Wall Functions
- •Initial Values
- •Wall Distance
- •Inlet Values for the Turbulence Length Scale and Intensity
- •Initial Values
- •The Spalart-Allmaras Turbulence Model
- •Inlet Values for the Turbulence Length Scale and Intensity
- •Pseudo Time Stepping for Turbulent Flow Models
- •References for the Single-Phase Flow, Turbulent Flow Interfaces
- •Selecting the Right Interface
- •Coupling to Other Physics Interfaces
- •Discretization
- •Fluid-Film Properties
- •Initial Values
- •Initial Values
- •Inlet
- •Outlet
- •Wall
- •Symmetry
- •Discretization
- •Initial Values
- •Initial Values
- •Fluid-Film Properties
- •Border
- •Inlet
- •Outlet
- •Conditions for Film Damping
- •The Reynolds Equation
- •Structural Loads
- •Gas Outflow Conditions
- •Rarefaction and Slip Effects
- •Geometry Orientations
- •References for the Thin-Film Flow Interfaces
- •Selecting the Right Interface
- •The Multiphase Flow Interface Options
- •The Relationship Between the Interfaces
- •Bubbly Flow
- •Coupling to Other Physics Interfaces
- •The Laminar Two-Phase Flow, Level Set Interface
- •Discretization
- •The Laminar Two-Phase Flow, Phase Field Interface
- •Domain Level Settings for the Level Set and Phase Field Interfaces
- •Fluid Properties
- •Mixing Length Limit
- •Initial Values
- •Initial Values
- •Volume Force
- •Volume Force
- •Gravity
- •Boundary Conditions for the Level Set and Phase Field Interfaces
- •Wall
- •Boundary Condition
- •Initial Interface
- •The Turbulent Flow, Two-Phase Flow, Level Set Interface
- •The Turbulent Two-Phase Flow, Phase Field Interface
- •Wall Distance Interface and the Distance Equation
- •Level Set and Phase Field Equations
- •Conservative and Non-Conservative Formulations
- •Phase Initialization
- •Numerical Stabilization
- •References for the Level Set and Phase Field Interfaces
- •Stabilization
- •Discretization
- •Level Set Model
- •Initial Values
- •Initial Values
- •Boundary Conditions for the Level Set Function
- •Inlet
- •Initial Interface
- •No Flow
- •Outlet
- •Symmetry
- •Discretization
- •Initial Values
- •Initial Values
- •Phase Field Model
- •Boundary Conditions for the Phase Field Function
- •Initial Interface
- •Inlet
- •Wetted Wall
- •Wetted Wall
- •Outlet
- •The Level Set Method
- •Conservative and Non-Conservative Form
- •Initializing the Level Set Function
- •Variables For Geometric Properties of the Interface
- •Reference for the Level Set Interface
- •About the Phase Field Method
- •The Equations for the Phase Field Method
- •Conservative and Non-Conservative Forms
- •Additional Sources of Free Energy
- •Variables and Expressions
- •Reference For the Phase Field Interface
- •The Laminar Bubbly Flow Interface
- •Reference Pressure
- •Discretization
- •The Turbulent Bubbly Flow Interface
- •Reference Pressure
- •Discretization
- •Fluid Properties
- •Slip Model
- •Initial Values
- •Initial Values
- •Volume Force
- •Volume Force
- •Gravity
- •Gravity
- •Mass Transfer
- •Mass Transfer
- •Boundary Conditions for the Bubbly Flow Interfaces
- •Wall
- •Liquid Boundary Condition
- •Gas Boundary Condition
- •Inlet
- •Liquid Boundary Condition
- •Gas Boundary Condition
- •Outlet
- •Liquid Boundary Condition
- •Gas Boundary Condition
- •Symmetry
- •Gas Boundary Conditions Equations
- •The Mixture Model, Laminar Flow Interface
- •Stabilization
- •Discretization
- •The Mixture Model, Turbulent Flow Interface
- •Stabilization
- •Mixture Properties
- •Mass Transfer
- •Mass Transfer
- •Initial Values
- •Initial Values
- •Volume Force
- •Volume Force
- •Gravity
- •Gravity
- •Boundary Conditions for the Mixture Model Interfaces
- •Wall
- •Mixture Boundary Condition
- •Dispersed Phase Boundary Condition
- •Inlet
- •Mixture Boundary Condition
- •Dispersed Phase Boundary Condition
- •Outlet
- •Mixture Boundary Condition
- •Symmetry
- •The Bubbly Flow Equations
- •Turbulence Modeling in Bubbly Flow Applications
- •References for the Bubbly Flow Interfaces
- •The Mixture Model Equations
- •Dispersed Phase Boundary Conditions Equations
- •Turbulence Modeling in Mixture Models
- •Slip Velocity Models
- •References for the Mixture Model Interfaces
- •Dispersed Phase
- •Discretization
- •Domain Conditions for the Euler-Euler Model, Laminar Flow Interface
- •Phase Properties
- •Solid Viscosity Model
- •Drag Model
- •Solid Pressure Model
- •Initial Values
- •Boundary, Point, and Pair Conditions for the Euler-Euler Model, Laminar Flow Interface
- •Wall
- •Dispersed Phase Boundary Condition
- •Inlet
- •Two-Phase Inlet Type
- •Continuous Phase
- •Dispersed Phase
- •Outlet
- •Mixture Boundary Condition
- •The Euler-Euler Model Equations
- •References for the Euler-Euler Model, Laminar Flow Interface
- •Selecting the Right Interface
- •The Porous Media Flow Interface Options
- •Coupling to Other Physics Interfaces
- •Discretization
- •Fluid and Matrix Properties
- •Mass Source
- •Mass Source
- •Initial Values
- •Initial Values
- •Boundary Conditions for the Darcy’s Law Interface
- •Pressure
- •Pressure
- •Mass Flux
- •Mass Flux
- •Inflow Boundary
- •Inflow Boundary
- •Symmetry
- •No Flow
- •Discretization
- •Fluid and Matrix Properties
- •Volume Force
- •Volume Force
- •Forchheimer Drag
- •Forchheimer Drag
- •Initial Values
- •Initial Values
- •Mass Source
- •Boundary Conditions for the Brinkman Equations Interface
- •Discretization
- •Fluid Properties
- •Porous Matrix Properties
- •Porous Matrix Properties
- •Forchheimer Drag
- •Forchheimer Drag
- •Volume Force
- •Volume Force
- •Initial Values
- •Initial Values
- •Boundary Conditions for the Free and Porous Media Flow Interface
- •Microfluidic Wall Conditions
- •Boundary Condition
- •Discretization
- •Domain, Boundary, and Pair Conditions for the Two-Phase Darcy’s Law Interface
- •Fluid and Matrix Properties
- •Initial Values
- •Initial Values
- •No Flux
- •Pressure and Saturation
- •Pressure and Saturation
- •Mass Flux
- •Inflow Boundary
- •Inflow Boundary
- •Outflow
- •Pressure
- •Darcy’s Law—Equation Formulation
- •About the Brinkman Equations
- •Brinkman Equations Theory
- •References for the Brinkman Equations Interface
- •Reference for the Free and Porous Media Flow Interface
- •Darcy’s Law—Equation Formulation
- •The High Mach Number Flow, Laminar Flow Interface
- •Surface-to-Surface Radiation
- •Discretization
- •Initial Values
- •Initial Values
- •Shared Interface Features
- •Fluid
- •Dynamic Viscosity
- •Inlet
- •Outlet
- •Consistent Inlet and Outlet Conditions
- •Pseudo Time Stepping for High Mach Number Flow Models
- •References for the High Mach Number Flow Interfaces
- •Selecting the Right Interface
- •The Non-Isothermal Flow Interface Options
- •Coupling to Other Physics Interfaces
- •The Non-Isothermal Flow, Laminar Flow Interface
- •Discretization
- •The Conjugate Heat Transfer, Laminar Flow Interface
- •The Turbulent Flow, Spalart-Allmaras Interface
- •Fluid
- •Dynamic Viscosity
- •Wall
- •Boundary Condition
- •Initial Values
- •Pressure Work
- •Viscous Heating
- •Dynamic Viscosity
- •Turbulent Non-Isothermal Flow Theory
- •References for the Non-Isothermal Flow and Conjugate Heat Transfer Interfaces
- •Selecting the Right Interface
- •The Heat Transfer Interface Options
- •Conjugate Heat Transfer, Laminar Flow
- •Conjugate Heat Transfer, Turbulent Flow
- •Coupling to Other Physics Interfaces
- •Accessing the Heat Transfer Interfaces via the Model Wizard
- •Discretization
- •Heat Transfer in Solids
- •Translational Motion
- •Translational Motion
- •Pressure Work
- •Heat Transfer in Fluids
- •Viscous Heating
- •Dynamic Viscosity
- •Heat Source
- •Heat Source
- •Initial Values
- •Initial Values
- •Boundary Conditions for the Heat Transfer Interfaces
- •Temperature
- •Temperature
- •Thermal Insulation
- •Outflow
- •Symmetry
- •Heat Flux
- •Heat Flux
- •Inflow Heat Flux
- •Inflow Heat Flux
- •Open Boundary
- •Periodic Heat Condition
- •Surface-to-Ambient Radiation
- •Boundary Heat Source
- •Boundary Heat Source
- •Heat Continuity
- •Pair Thin Thermally Resistive Layer
- •Pair Thin Thermally Resistive Layer
- •Thin Thermally Resistive Layer
- •Thin Thermally Resistive Layer
- •Line Heat Source
- •Line Heat Source
- •Point Heat Source
- •Convective Cooling
- •Out-of-Plane Convective Cooling
- •Upside Heat Flux
- •Out-of-Plane Radiation
- •Upside Parameters
- •Out-of-Plane Heat Flux
- •Domain Selection
- •Upside Inward Heat Flux
- •Change Thickness
- •Change Thickness
- •Porous Matrix
- •Heat Transfer in Fluids
- •Thermal Dispersion
- •Dispersivities
- •Heat Source
- •Equation Formulation
- •Activating Out-of-Plane Heat Transfer and Thickness

I N L E T
Specify a value of the Inlet volume fraction Vf. The value must be in the range from 0 to 1 and the default is 0.
Wetted Wall
The Wetted Wall node is the default boundary condition representing wetted walls. Along a wetted wall the contact angle for the fluid, w, is specified, and across it the mass flow is zero. This is prescribed by
n 2 = 2 cos w
in combination with
n ----- = 0
2
B O U N D A R Y S E L E C T I O N
From the Selection list, choose the boundaries that represent wetted walls.
W E T T E D W A L L
Enter a value or expression for the Contact angle w. The default value is /2 rad.
Outlet
The Outlet node adds a boundary condition for outlets (outflow boundaries) in a Phase Field interface. This feature imposes no boundary condition on the phase field function.
B O U N D A R Y S E L E C T I O N
From the Selection list, choose the boundaries that represent outlets.
T H E P H A S E F I E L D I N T E R F A C E | 227

T h e o r y f o r t h e L e v e l S e t I n t e r f a c e
Fluid flow with moving interfaces or boundaries occur in a number of different applications, such as fluid-structure interaction, multiphase flows, and flexible membranes moving in a liquid. One way to track moving interfaces is to use a level set method. A certain contour line of the globally defined function, the level set function, then represents the interface between phases. With The Level Set Interface the fluid-fluid interface can move within any velocity field.
In this section:
•The Level Set Method
•Conservative and Non-Conservative Form
•Initializing the Level Set Function
•Variables For Geometric Properties of the Interface
•Reference for the Level Set Interface
The Level Set Method
The level set method is a technique to represent moving interfaces or boundaries using a fixed mesh. It is useful for problems where the computational domain can be divided into two domains separated by an interface. Each of the two domains can consist of several parts. Figure 7-1 shows an example where one of the domains consists of two separated parts. The interface is represented by a certain level set or isocontour of a globally defined function, the level set function .
In COMSOL Multiphysics, is a smooth step function that equals zero in a domain and one in the other. Across the interface, there is a smooth transition from zero to one. The interface is defined by the 0.5 isocontour, or the level set, of . Figure 7-2 shows the level set representation of the interface in Figure 7-1.
228 | C H A P T E R 7 : M A T H E M A T I C S , M O V I N G I N T E R F A C E B R A N C H

Figure 7-1: Example of two domains divided by an interface. In this case, one of the domain consists of two parts. Figure 7-2 shows the corresponding level set representation.
Figure 7-2: Surface plot of the level set function corresponding to Figure 7-1.
The physics interface solves the following equation in order to move the interface with the velocity field u:
|
|
|
|
|
|
|
|
|
+ u = |
|
– 1 |
– |
---------- |
(7-1) |
|
t |
|
|
|
|
|
|
|
The terms on the left-hand side give the correct motion of the interface, while those on the right-hand side are necessary for numerical stability. The parameter, , determines the thickness of the region where goes smoothly from zero to one and is typically of the same order as the size of the elements of the mesh. By default, is constant within each domain and equals the largest value of the mesh size, h, within
T H E O R Y F O R T H E L E V E L S E T I N T E R F A C E | 229

the domain. The parameter determines the amount of reinitialization or stabilization of the level set function. It needs to be tuned for each specific problem. If is too small, the thickness of the interface might not remain constant, and oscillations in may appear because of numerical instabilities. On the other hand, if is too large, the interface moves incorrectly. A suitable value for is the maximum magnitude of the velocity field u.
Conservative and Non-Conservative Form
If the velocity is divergence free, that is, if
u = 0 |
(7-2) |
the volume (area for 2D problems) bounded by the interface should be conserved if there is no inflow or outflow through the boundaries. To obtain exact numerical conservation, switch to the conservative form
|
|
|
|
|
|
|
|
|
|
+ u |
= |
|
– 1 |
– |
---------- |
(7-3) |
|
t |
|
|
|
|
|
|
|
|
in the Level Set feature’s Settings window.
Using the conservative level set form, exact numerical conservation of the integral of
is obtained. However, the non-conservative form is better suited for numerical calculations and usually converges more easily. The non-conservative form, which is the default form, only conserves the integral of the level set function approximately, but this is sufficient for most applications.
Initializing the Level Set Function
If the study type Transient with Initialization is selected, the level set variable is first initialized so that it varies smoothly between zero and one over the interface. For that study, two study steps are created, Phase Initialization and Time Dependent. The Phase Initialization step solves for the distance to the initial interface, Dwi. The Time Dependent study then uses the initial condition for the level set function according to the following expression:
|
1 |
0 = |
-------------------------- |
|
1 + e–Dwi |
in domains initially outside the interface and
230 | C H A P T E R 7 : M A T H E M A T I C S , M O V I N G I N T E R F A C E B R A N C H