Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
CFDModuleUsersGuide.pdf
Скачиваний:
81
Добавлен:
07.02.2016
Размер:
2.65 Mб
Скачать

The Spalart-Allmaras Turbulence Model

The Spalart-Allmaras model is a on-equation turbulence model designed mainly for aerodynamic applications. It is a low Reynolds number model, that is, it does not utilize wall functions. The phrase “low Reynolds number” refers to the region close to the wall where the viscous effects dominate.

The model gives satisfactory results for many engineering applications, airfoil and wing applications in particular for which it is calibrated. It is however not appropriate for applications involving jet-like free shear regions. It also has some nonphysical properties. It predicts, for example, zero decay rate of the eddy viscosity in a uniform free-stream (Ref. 1).

Compared to the low Reynolds number k- model, the Spalart-Allmaras model is generally considered more robust and is often used as a way to obtain an initial solution for more advanced models. It can in particular give reasonable results for relatively coarse meshes on which the low Reynolds number k- model cannot converge or even diverges.

This module includes the standard version of the Spalart-Allmaras model without trip term (see Ref. 1 and Ref. 12). The model solves for the undamped turbulent kinematic viscosity, :

˜

 

 

˜

 

 

 

˜

˜

 

 

 

 

 

 

˜

 

 

2

 

1

 

˜

˜

 

 

c

b2

 

˜

˜

 

 

+ u

 

 

c

 

 

 

 

f

 

 

 

+

 

+

 

 

(4-35)

-----

=

b1

S

c

w1

 

----

 

 

--

+

-------

 

t

 

 

 

 

 

 

 

 

 

 

w l

w

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The model includes the following auxiliary variables

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c

b1

 

 

1

+ c

b2

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

˜

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cw1 = -----v2-- +

 

-

--

--

------

--

--

--

 

 

 

= --

fv1 = ----3----+-----c---v13---

 

 

 

 

 

f

 

= 1

 

 

 

 

 

 

f

 

 

 

 

 

1 + cw36 1/ 6

g = r + c

 

 

r6

r

 

 

v2

--

------

----

-------

 

w

= g

----

-----

----

--------

 

w2

 

 

 

 

 

1 + fv1

 

 

 

 

 

 

g

6 + cw36

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= ˜

˜

 

 

 

 

 

˜

 

 

 

 

 

 

˜

S = 2 ij ij

 

 

 

 

 

 

 

r

--2-----2--

 

 

S = S +

----

2------2-- fv2

 

 

 

 

 

 

 

 

 

S v lw

 

 

 

 

 

 

 

 

 

 

v lw

 

 

 

 

 

 

 

 

 

 

 

where ij = 0.5 u uT is the mean rotation rate tensor, lw is the distance to the closest wall and is the kinematic viscosity. The turbulent viscosity is calculated by

156 | C H A P T E R 4 : S I N G L E - P H A S E F L O W B R A N C H

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]