Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Документ Microsoft Office Word (2).docx
Скачиваний:
12
Добавлен:
09.06.2015
Размер:
64.53 Кб
Скачать

7) Ковалентная связь. Метод валентных связей

Химическая связь, осуществляемая общими электронными парами, возникающих в оболочках связываемых атомов, имеющих антипараллельные спины, называется атомной, или ковалентной связью. Ковалентная связь двухэлектронная и двуцентровая (удерживает ядра). Она образуется атомами одного вида – ковалентная неполярная – новая электронная пара, возникшая из двух неспаренных электронов, становится общей для двух атомов хлора; и атомами разного вида, сходных по химическому характеру – ковалентная полярная. Элементы с большей электроотрицательностью (Cl) будут оттягивать общие электроны от элементов с меньшей электроотрицательностью (Н). Атомы с непарными электронами, имеющими параллельные спины, отталкиваются – химическая связь не возникает. Способ образования ковалентной связи называется обменным механизмом.

Свойства ковалентной связи. Длина связи – межъядерное расстояние. Чем это расстояние короче, чем прочнее химическая связь. Энергия связи – количество энергии, требующееся для разрыва связи. Величина кратности связи прямо пропорциональна энергии связи и обратно пропорциональна длине связи. Направленность связи –определенное расположение электронных облаков в молекуле. Насыщаемость – способность атома образовывать определенное количество ковалентных связей. Химическая связь, образованная перекрыванием электронных облаков вдоль оси, соединяющей центры атомов, называется ?-связью. Связь, образованная перекрыванием электронных облаков перпендикулярно оси, соединяющей центры атомов, называется ?-связью. Пространственная направленность ковалентной связи характеризуется углами между связями. Эти углы называются валентными углами. Гибридизация – процесс перестройки неравноценных по форме и энергии электронных облаков, ведущих к образованию одинаковых по тем же параметрам гибридных облаков. Валентность – число химических связей (ковалентных), посредством которых атом соединен с другими. Электроны, участвующие в образовании химических связей, называются валентными. Число связей между атомами равно числу его неспаренных электронов, участвующих в образовании общих электронных пар, поэтому валентность не учитывает полярность и не имеет знака. В соединениях, в которых отсутствует ковалентная связь, имеет местостепень окисления – условный заряд атома, исходный из предположения, что оно состоит из положительно или отрицательно заряженных ионов. К большинству неорганических соединений применимо понятие степень окисления.

обменного механизма, когда каждый из взаимодействующих атомов поставляет по одному электрону, или по донорно-акцепторному механизму, если электронная пара передается в общее пользование одним атомом (донором) другому атому (акцептору)

8) Скорость химической реакции зависит от природы реагирующих веществ и условий протекания реакции: концентрации с, температуры t , присутствия катализаторов, а также от некоторых других факторов (например, от давления - для газовых реакций, от измельчения - для твердых веществ, от радиоактивного облучения).

Влияние концентраций реагирующих веществ. Чтобы осуществля­лось химическое взаимодействие веществ А и В, их молекулы (части­цы) должны столкнуться. Чем больше столкновений, тем быстрее протекает реакция. Число же столкновений тем больше, чем выше концентрация реагирующих веществ. Отсюда на основе обширного экспериментального материала сформулирован основной за­кон химической кинетики, устанавливающий зависимость скорости реакции от концентрации реагирующих веществ:

Cкорость  химической реакции  пропорциональна произведению  концентра­ций реагирующих веществ.

Для реакции ( I ) этот закон выразится уравнением

v = kcA cB ,       (1)

где сА  и сВ   - концентрации веществ А и В, моль/л; k - коэффициент пропорциональности, называемый константой скорости реакции. Основной закон химической кинетики часто называют законом действующих масс.

Из уравнения (1) нетрудно установить физический смысл константы скорости k : она численно равна скорости реакции, когда концентрации каждого из реагирующих веществ сос­тавляют 1 моль/л или когда их произведение равно единице.

Константа скорости реакции k зависит от природы реагирующих веществ и от температуры, но не зависит от их концентраций.

Уравнение (1), связывающее скорость реакции с концентрацией реагирующих веществ, называется кинетическим уравнением реакции. Если опытным путем определено кинетическое уравнение реакции, то с его помощью можно вычислять скорости при других концентрациях тех же реагирующих веществ.

Влияние температуры .

Зависимость скорости реакции от температу­ры определяется правилом Вант-Гоффа:

При повышении температуры на каждые 10о скорость большинства реакций увеличивается в 2-4 раза.

Математически эта зависимость выражается соотношением

 

vt 2 = vt 1 γ  , 

где vt 1 , vt 2  -  скорости реакции  соответственно при  начальной  ( t 1 ) и конечной ( t 2 ) температурах, а γ - температурный коэффициент скоро­сти реакции, который показывает, во сколько раз увеличивается ско­рость реакции с повышением температуры реагирующих веществ на 10°.

Правило Вант-Гоффа является приближенным и применимо лишь для ориентировочной оценки влияния температуры на скорость реак­ции. Температура влияет на скорость химической реакции, увеличивая константу скорости.

ЭНЕРГИЯ АКТИВАЦИИ, наименьшее количество энергии, необходимое для начала химической реакции. Помере того, как в ходе реакции химические связи разрываются или формируются, энергия системыувеличивается по сравнению с энергией исходных веществ, достигает максимума, а затем уменьшается доуровня энергии конечных продуктов. Разница между энергией исходных веществ и упомянутым максимумоми представляет собой энергию активации. Эта энергия часто передается смеси реагентов путем нагрева,хотя некоторые химические реакции начинаются спонтанно сразу после соединения реагентов.

9) Катализ – изменение скорости химической реакции при воздействии некоторых веществ. Вещества, ускоряющие протекание химической реакции, называются катализаторами, а вещества, замедляющие химическую реакцию,− ингибиторами. Поэтому различают положительный и отрицательный катализ. Каталитических процессов, реализуемых в природе и технике, очень много: реакции, протекающие в живых организмах (ферментативные процессы), переработка нефти с помощью крекинга и риформинга, гидролиз сложных эфиров, получение серной кислоты и т.д. ПРОМОТОР, в химии вещество, применяемое в небольших количествах вместе с катализатором дляувеличения активности КАТАЛИЗАТОРА. Например, в ПРОЦЕССЕ ХАБЕРА железо-катализатор применяетсядля ускорения реакции соединения водорода с азотом под давлением для образования аммиака. Этоткатализатор активизируется небольшим количеством оксида калия, которое и является промотором.