Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
(1).docx
Скачиваний:
108
Добавлен:
08.06.2015
Размер:
378.25 Кб
Скачать

8 Билет фактор эквивалентности и молярная масса

Частица

Фактор эквивалентности

Примеры

Элемент

,

где В(Э) – валентность элемента

Простое вещество

,

где n(Э) – число атомов элемента (индекс в химической формуле), В(Э) – валентность элемента

fЭ(H2) = 1/(21) = 1/2;

fЭ(O2) = 1/(22) = 1/4;

fЭ(Cl2) = 1/(21) = 1/2;

fЭ(O3) = 1/(32) = 1/6

Оксид

,

где n(Э) – число атомов элемента (индекс в химической формуле оксида), В(Э) – валентность элемента

fЭ(Cr2O3) = 1/(23) = 1/6;

fЭ(CrO) = 1/(12) = 1/2;

fЭ(H2O) = 1/(21) = 1/2;

fЭ(P2O5) = 1/(25) = 1/10

Кислота

,

где n(H+) – число отданных в ходе реакции ионов водорода (основность кислоты)

fЭ(H2SO4) = 1/1 = 1 (основность равна 1)

или

fЭ(H2SO4) = 1/2

(основность равна 2)

Основание

,

где n(ОH) – число отданных в ходе реакции гидроксид-ионов (кислотность основания)

fЭ(Cu(OH)2) = 1/1 = 1 (кислотность равна 1) или

fЭ(Cu(OH)2) = 1/2

(кислотность равна 2)

Соль

,

где n(Ме) – число атомов металла (индекс в химической формуле соли), В(Ме) – валентность металла; n(А) – число кислотных остатков, В(А) – валентность кислотного остатка

fЭ(Cr2(SO4)3) = 1/(23) = 1/6 (расчет по металлу) или

fЭ(Cr2(SO4)3) = 1/(32) = 1/6 (расчет по кислотному остатку)

 

Частица в окислительно-восстано­вительных реакциях

,

где  – число электронов, участвующих в процессе окисления или восстановления

Fe2+ + 2 Fe0

fЭ(Fe2+) =1/2;

 

MnO4 + 8H+ + 5   Mn2+ + 4H2O

fЭ(MnO4) = 1/5

Ион

,

где z – заряд иона

fЭ(SO42–) = 1/2

Число, показывающее, какая часть молекулы или другой частицы вещества соответствует эквиваленту, называется фактором эквивалентности (fЭ). 

Фактор эквивалентности – это безразмерная величина которая меньше либо равна 1. Молярная масса эквивалента имеет размерность «г/моль».

Молярная масса эквивалента сложного вещества равна сумме молярных масс эквивалентов образующих его составных частей, например:

МЭ(оксида) = МЭ(элемента) + МЭ(О) = МЭ(элемента) + 8 

МЭ(кислоты) = МЭ(Н) + МЭ(кислотного остатка) = 1 + МЭ(кислотного остатка)

 МЭ(основания) = МЭ(Ме) + МЭ(ОН) = МЭ(Ме) + 17

 МЭ(соли) = МЭ(Ме) + МЭ(кислотного остатка).

9 Билет

Атом- это электронейтральная микросистема состоящая из + заряженного ядра содержащего протоны и нейтроны, и вращающихся вокруг него отрицательные электроны.

10^-13 м - атом

10^-18 м - ядро

Атом состоит из положительно заряженного ядра, окруженного облаком отрицательно заряженных электронов. Размеры атома в целом определяются размерами его электронного облака и велики по сравнению с размерами ядра (линейные размеры атома ~ 10~8см, его ядра ~ 10" -10" 13 см). Электронное облако атома не имеет строго определенных границ, поэтому размеры атома в значительной степени условны и зависят от способов их определения. Ядро атома состоит из Z протонов и N нейтронов, удерживаемых ядерными силами. Положит. заряд протона и отрицат. заряд электрона одинаковы по абсолютной величине и равны е= 1,60*10-19 Кл; нейтрон не обладает электрическим зарядом. Заряд ядра +Ze - основная характеристика атома, обусловливающая его принадлежность к определенному химическому элементу. Порядковый номер элемента в периодической системе Менделеева (атомный номер) равен числу протонов в ядре.

Атомная орбиталь- это волновая функция описывающая состояние электрона в атоме и полностью характеризуемая конкретными значениями квантовых чисел,n,l,m1=const

Каждая орбиталь характеризуется определенной зависимостью распределения функции в пространстве и знаком, т.е. она как обычная математическая функция может быть либо + либо - в конкретной точке пространства . орбиталь обладает определенной симметрией.

Квантовые числа(n)-это главное квантовое число характеризующееся энергией электрона численно равное номеру периода. принимает целые значения характеризует размер орбитали и средний радиус электрона от ядра чем меньше энергия электрона тем ближе электрон к ядру.

l- орбитальное квантовое число

определяет форму атомных орбиталей и показывает запас энергии на подуровни.. Под состоянием электрона в атоме понимают совокупность информации об энергии определенного электрона и пространстве, в котором он находится. Мы уже знаем, что электрон в атоме не имеет траектории движения, то есть можно говорить лишь о вероятности нахождения его в пространстве вокруг ядра. Он может находиться в любой части этого пространства, окружающего ядро, и совокупность различных положений его рассматривают как электронное облако с определенной плотностью отрицательного заряда. Образно это можно представить себе так: если бы удалось через сотые или миллионные доли секунды сфотографировать положение электрона в атоме, как при фотофинише, то электрон на таких фотографиях был бы представлен в виде точек. При наложении бесчисленного множества таких фотографий получилась бы картина электронного облака с наибольшей плотностью там, где этих точек будет больше всего.

электронно-графическая формула для отдельных атомов химических элементов – это расположение всех его электронов на орбиталях. В такой формуле все электроны помечаются стрелочками, а квадратиками – орбитали. Для того чтобы составить электронно-графическую формулу, необходимо понять строение самого атома, а особенно его ядра. В состав ядра атома входят нейтроны и протоны. Вокруг ядра вращаются на электронных орбиталях электроны.

Существуют такие уровни электронно-графической формулы:

  1. s-элементы. Записывается таким образом s1 — s2 - s-подуровень внешнего уровня. Здесь расположены всегда первые два элемента из каждого периода: Ве 1S2 2S2.

  2. р-элементы. Записывается таким образом р1 -- p6. р - подуровень внешнего уровня. Здесь расположены всегда шесть последних элемента каждого, начиная со второго, 

периода: Na 1s 22s22p 63s 1.

  1. d-элементы Записывается таким образом d1 — d10. d-подуровень последнего уровня. Данные элементы отличаются от первых двух, так как на внешнем уровне может оставаться 1 или 2 электрона. Сюда принадлежат элементы вставных декад, начиная с четвертого периода, которые расположенные между p и s-элементами. Они могут называться, как переходные элементы: Zr 1s 22s 22p63s 23p64s 23d104p65s24d2.

  2. f-элементы Записывается таким образом f1 —f14, внешнее строение электронного уровня не поддается изменениям. Сюда относят актиноиды и лантаноиды, которые стоят в седьмом и шестом периодах: Ce 1s 22s 22p 63s 23p64s23d104p65s24d105p66s24f2.

Исходя из вышесказанного, формулы создаются в соответствии с максимально возможным числом электронов, что находятся на энергетических уровнях: первый уровень включает два электрона, второй — восемь, третий — восемнадцать, а четвертый — тридцать два.

От заполнения ячеек электронами энергетических уровней зависит деление групп на побочную и главную подгруппы. Таким образом, главную подгруппу образуют s- и p-элементы, а d-элементы - побочную подгруппу. В каждой из этих групп элементы, имеющие похожее строение внешнего энергетического уровня объединяются в атомы. Атомы главных подгрупп имеют на внешних уровнях число электронов, которое равняется номеру группы, это валентные электроны. В побочных группах валентные еще и электроны предпоследних уровней. Отсюда можно сделать вывод, что нумерация групп указывает, как правило, на количество электронов, участвующих в образовании связей.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]