
- •Л.В. Кольцов, м.А. Лосева
- •Глава 1.1 Предмет курса. Основные понятия. Классификация дисперсных систем. Методы получения дисперсных систем
- •Классификация по агрегатному состоянию фаз
- •Глава 1.2 Молекулярно-кинетические свойства дисперсных систем
- •Тема 1.2.1.Броуновское движение
- •Тема 1.2.2. Диффузия
- •Тема 1.2.3. Осмотическое давление
- •Глава 1.3 Оптические свойства и методы исследования дисперсных систем
- •Вопросы для самоконтроля
- •Тема 2.1.1. Термодинамическая характеристика дисперсных систем. Термодинамический метод избыточных величин Гиббса и метод «слоя конечной толщины
- •Тема 2.1.2. Поверхностное натяжение. Методы измерения поверхностного натяжения. Зависимость поверхностного натяжения от температуры и концентрации. Уравнение Шишковского
- •Тема 2.1.3. Уравнение Гиббса-Гельмгольца для поверхностной энергии. Полная поверхностная энергия
- •Глава 2.2 Адсорбция
- •Тема 2.2.2. Фундаментальное уравнение Гиббса. Определение Гиббсовской адсорбции.
- •Тема 2.2.3. Поверхностная активность. Поверхностно-активные и поверхностно-инактивные вещества. Анализ уравнения Гиббса. Пав. Эффект Ребиндера. Правило Дюкло-Траубе
- •Глава 2.3 Адсорбционные равновесия
- •Тема 2.3.3. Адсорбция на границе «твердое тело – жидкость». Молекулярная адсорбция. Правило выравнивания полярностей Ребиндера
- •Глава 2.4 Адгезия. Когезия. Смачивание и растекание жидкости
- •Тема 2.4.1. Понятие когезии и адгезии. Смачивание и растекание. Работа адгезии и когезии. Уравнение Дюпре. Краевой угол смачивания. Закон Юнга. Гидрофобные и гидрофильные поверхности
- •Тема 2.4.2. Коэффициент растекания по Гаркинсу. Условие растекания и смачивания. Эффект Марангони. Правило Антонова
- •Глава 2.5 Адсорбция ионов на кристалле. Электрокинетические явления
- •Тема 2.5.1. Образование и строение дэс. Электрокинетический потенциал. Правила написания мицелл
- •Тема 2.5.2. Обменная адсорбция. Иониты. Уравнение Никольского
- •Тема 2.5.3. Электрокинетические явления. Электрофорез. Электроосмос. Расчет -потенциала по скорости электрофореза и электроосмоса. Понятие поверхностной проводимости
- •Электроосмос - направленное перемещение жидкости в пористом теле под действием приложенной разности потенциалов (рис. 2.5.3.6).
- •Глава 3.1 Стабилизация и коагуляция дисперсных систем
- •Тема 3.1.1. Виды устойчивости дисперсных систем. Лиофобные и лиофильные золи
- •Правила коагуляции:
- •Тема 3.1.3. Теория длфо
- •Тема 3.1.4. Виды коагуляции: концентрационная и нейтрализационная. Коагуляция смесями электролитов. Явление «неправильные ряды». Механизм и кинетика коагуляции
- •При коагуляции смесью электролитов различают два типа процессов:
- •Тема 3.1.5. Седиментация и диффузия. Гипсометрический закон. Седиментационно-диффузионное равновесие. Скорость седиментации
- •Глава 4.1 Теория структурообразования Управление структурно-механическими свойствами материалов
- •Тема 4.1.2. Классификация дисперсных систем по структурно-механическим свойствам. Возникновение объемных структур в различных дисперсных системах
- •Глава 5.1 Свойства растворов высокомолекулярных соединений
- •Тема 5.1.1. Свойства вмс. Мембранное равновесие Доннана. Набухание вмс. Их растворение. Давление набухания. Степень набухания. Пластификаторы. Уравнение Хаггинса
- •Тема 5.1.2. Белки как полиэлектролиты
- •Тема 5.1.3. Вязкость дисперсных систем и растворов вмс. Уравнение Бингама. Удельная, характеристическая, относительная вязкости. Методы измерения вязкости. Тиксотропия
- •Рассмотрим три наиболее распространенных метода измерения вязкости:
- •Тема 5.1.3. Коллоидные пав
- •Свойства водных растворов пав
- •Глава 6.1 суспензии
- •Глава 6.2 пасты
- •Глава 6.3 эмульсии
- •Глава 6.4 пены
- •Глава 6.5 аэрозоли
- •Классификация аэрозолей
- •Вопросы для самоконтроля
- •Глава 6.6 порошки
- •Поверхностные явления в дисперсных системах
- •443100. Г. Самара, ул. Молодогвардейская, 244. Главный корпус.
- •4 43100. Г. Самара, ул. Молодогвардейская, 244. Корпус №8.
Тема 3.1.4. Виды коагуляции: концентрационная и нейтрализационная. Коагуляция смесями электролитов. Явление «неправильные ряды». Механизм и кинетика коагуляции
При коагуляции золя электролитами различают концентрационную и нейтрализационную коагуляцию.
Концентрационная коагуляция имеет место, когда она происходит под действием индифферентного электролита вследствие сжатия диффузного слоя противоионов и уменьшения абсолютного значения -потенциала.
Рассмотрим концентрационную коагуляцию золя хлорида серебра, стабилизированного нитратом серебра, при введении в золь нитрата калия.
Формула мицеллы имеет вид:
.
На рис. 3.1.4.1 показан график изменения потенциала в ДЭС мицеллы хлорида серебра. Кривая 1 относится к исходной мицелле, кривая 2 – после добавления KNO3 в количестве, вызывающем коагуляцию. При добавлении KNO3 диффузный слой противоионов сжимается, формула мицеллы приобретает вид:
На
рис. 3.1.4.2 представлены потенциальные
кривые, характеризующие взаимодействие
частиц в этом золе.-потенциал
исходной коллоидной частицы положительный,
это создаёт потенциальный барьер
коагуляции. После добавления KNO3
∆Uк=0
(кривая 2 рис. 3.1.4.2). Поэтому ничто не
мешает коллоидным частицам сблизиться
на такое расстояние, где преобладают
силы притяжения – происходит коагуляция.
Так как в данном случае причиной
коагуляции является увеличение
концентрации противоионов, она называется
концентрационной
коагуляцией.
Для этого случая теория дает формулу
где - порог коагуляции;
С– константа, слабо зависящая от асимметрии электролита, т.е. отношение числа зарядов катиона и аниона;
А– константа;
е– заряд электрона;
- диэлектрическая проницаемость;
Z– заряд коагулирующего иона;
Т– температура.
Из уравнения следует, что значение порогов коагуляции для одно-, двух-, трех-, четырех- зарядных ионов должны соотноситься 1 к (1/2)6 к (1/3)6 к (1/4)6 и т.д., т.е. обосновывается ранее представленное эмпирическое правило Шульце – Гарди.
Нейтрализационная коагуляция происходит при добавлении к золю неиндифферентного электролита. При этом потенциалопределяющие ионы связываются в малорастворимое соединение, что приводит к уменьшению абсолютных величин термодинамического потенциала, а следовательно, и -потенциала вплоть до нуля.
Если взять в качестве исходного только что рассмотренный золь хлорида серебра, то для нейтрализации потенциалопределяющих ионов Ag+ в золь необходимо ввести, например, хлорид калия. После добавления определённого количества этого неиндифферентного электролита мицелла будет иметь вид:
В системе не будет ионов, способных адсорбироваться на поверхности частицы AgCl, и поверхность станет электронейтральной. При столкновении таких частиц происходит коагуляция.
Так как причиной коагуляции в данном случае является нейтрализация потенциалопределяющих ионов, такую коагуляцию называют нейтрализационной коагуляцией.
Необходимо отметить, что для полной нейтрализационной коагуляции неиндифферентный электролит должен быть добавлен в строго эквивалентном количестве.