Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

BIS4_matem_org_ua

.pdf
Скачиваний:
12
Добавлен:
06.06.2015
Размер:
1.4 Mб
Скачать

е3

 

A

(рис. 2.6). Очевидно, что а

 

 

 

 

ОА ОР РА . Век-

 

a

 

 

 

 

 

 

е2

 

тор ОР компланарен с векторами е1, е2 . Согласно

 

 

 

е2 . Вектор

 

О

 

P

теореме 1 ОР= 1е1 2

РА колли-

е1

неарен вектору е3 по построению. Следовательно,

 

 

 

 

 

 

 

 

 

Рис. 2.6

 

найдется число 3 такое, что РА 3е3. Имеем

 

 

 

а 1е1 2е2 3е3 ,

 

 

(2.5)

т.е. получено разложение произвольного вектора а по системе линейно неза-

висимых векторов е1, е2 , е3.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

"

 

 

 

 

, е называют

Упорядоченную тройку некомпланарных векторовУе , е

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Г

 

 

1

 

2

3

 

 

 

 

базисом в пространстве.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Н

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

"

 

 

 

 

 

 

 

 

 

 

 

 

 

Числа ,

 

,

 

 

в (2.4)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

З

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

3

и (2.5) координаты вектора а в данном ба-

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

У

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

В

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

зисе. Записывают

 

 

а 1 , 2

, 3 .

 

 

 

 

 

 

 

 

Г

 

 

базиса

каждому

вектору

 

 

 

Посредством

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

и

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

к

 

 

чисел (два на плоскости, три

ставится в соответствие упорядоченный набори

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

т

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

в пространстве) координаты вектора и наоборот.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

м

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Имеют место следующие свойстева:

 

 

ua

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

а

 

 

 

 

все его координаты умножаются на

1. При умножении вектора на число.

это число:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

м

 

 

 

 

org

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

й

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

е

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

а

 

е

 

 

еш

3

е

3

1

е

2

е

2

3

е

3

 

 

 

 

 

1 1

 

 

 

2с2

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ы

 

 

 

 

matem

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

в

 

 

 

 

соответствующие координаты в данном бази-

2. При сложении векторова

се складываются:

 

 

 

 

р

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

д

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

 

 

 

е

 

 

 

 

 

e

 

 

 

 

e

 

 

 

e

 

 

 

e

 

 

 

e

 

 

 

 

 

 

b

ф

e

 

2

 

3

 

 

2

 

3

 

 

 

 

 

 

 

а

 

1 1

 

 

 

е

2

 

 

 

 

 

3

 

 

 

е

1 1

 

 

2

 

 

 

 

3

 

 

 

 

 

 

 

К

1

 

1

 

 

 

2

 

2

 

 

3

 

3

е .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3. Декартова система координат

 

 

 

 

 

 

 

 

 

 

Пусть в пространстве задан базис

 

е1, е2 , е3,

отнесенный к некоторой

фиксированной точке О. Совокупность точки О и базиса образует декарто-

ву систему координат. Точка О ее начало (рис. 2.7).

Наиболее распространена прямоугольная система координат. В каче-

стве ее базиса в пространстве принимают три взаимно перпендикулярных единичных вектора: e1 i , e2 j , e3 k орты (рис. 2.8). Направленные

вдоль этих ортов оси называют: Ох ось абсцисс, Оу ось ординат, Oz ось аппликат.

20

 

 

е3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

О

 

 

 

 

е2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

k

 

y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

j

 

 

 

 

 

 

 

 

 

е1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Рис. 2.7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Рис. 2.8

В дальнейшем будем рассматривать только прямоугольную систему ко-

ординат.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Произвольной точке М пространст-

 

z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

"

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ва можно поставить в соответствие век-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

У

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Г

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Н

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

М(х,у,z)

 

тор

r

OM ,

"выходящий из точки О.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

З

 

 

 

 

 

 

 

 

z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Его

 

 

 

 

У

 

радиус-вектором точки

 

 

 

 

r

 

 

 

 

 

 

 

 

 

 

 

 

 

называют

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

М.

 

 

 

 

В

 

 

 

вектора

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

РазложениеГ

r по базису за-

 

 

k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

и

 

в виде

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

писываютк

 

 

 

 

 

 

 

 

j

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

и

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

т

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y

 

 

а

.ua

r x i y j z k .

x

 

 

 

 

 

у

 

 

 

 

 

 

 

 

 

 

 

м

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

е

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

org

x, y, z

 

(координаты вектора r )

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

тЧисла

 

 

i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

а

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

м

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

являются проекциями этого вектора на

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

matem

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

й

 

координатные оси (рис. 2.9). Их вместе с

 

 

 

 

 

 

 

 

 

 

 

 

 

е

 

 

x

 

 

 

 

 

 

 

 

 

 

 

ш

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

с

 

 

 

 

 

 

тем называют координатами точки М.

 

 

 

Рис. 2.9

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ы

 

 

 

 

 

 

 

Записывают M x, y,z ,

r x, y,z ,

 

 

 

 

 

 

 

в

 

 

 

 

 

 

 

 

т.е. координаты точки

 

а

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ри ее радиус-вектора совпадают.

 

 

 

 

 

 

 

 

 

 

 

 

д

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Применяя теорему Пифагора (рис. 2.9), получаем формулу для вычисле-

 

 

 

 

ф

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ния длины радиуса-вектора по его координатам:

 

 

 

 

 

 

 

 

 

 

 

 

 

К

 

 

 

 

 

 

 

 

 

r

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x2 y2 z2 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Вектор в прямоугольной системе координат. Пусть a

AB произ-

вольный вектор в пространстве (рис. 2.10), разложение которого по ортам имеет вид

a ax i a y j az k ,

 

(2.6)

а точки А и В заданы своими координатами A x1 , y1 ,z1 , B x2 , y2 ,z2 .

Тогда радиус-векторы точек А и В:

 

 

 

 

 

j

z2k .

OA x1i y1 j z1k ,

OВ x2i y2

 

21

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

az

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

О

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ay

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ax

 

x1

 

 

 

 

 

 

 

 

 

 

 

y1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y2

 

 

 

у

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

"

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

У

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Г

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Н

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

"

 

 

 

 

 

 

 

 

 

 

 

 

 

х

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

З

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

У

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

В

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Рис. 2.10

 

 

 

Г

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

и

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

к

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

и

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

т

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

а

j

z

 

 

k x i

y

j

z k

Очевидно, a AB OB OA x

 

i мy

2

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

е

 

 

.ua

 

 

 

 

 

 

1

 

 

 

1

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

т

.yorgj

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

а

 

 

 

z

 

 

z k .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x i мy

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

1

 

 

 

 

й

2

 

 

 

1

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

е

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Сравнивая эту запись с формулой (2.6), заключаем:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ш

 

matem

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

с

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ax x2

 

ы

,

 

 

 

y1

,

 

 

 

 

az z2

z1 .

(2.7)

 

 

 

 

 

вx1

 

a y

 

y2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

а

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

р

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

д

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Таким образоме, чтобы найти координаты вектора (его проекции на

координатные осиф), достаточно из координат конца вектора вычесть со-

 

 

 

 

 

 

а

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

К

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ответствующие координаты его начала.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Пусть a ax ,ay ,az ,

b bx ,by ,bz произвольные векторы. Спра-

ведливы соотношения:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1) a b

a

x

,a

y

,a

z

 

b ,b

 

,b a

x

b

,a

y

b

y

,a

z

b ; (2.8)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

y z

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

z

2) a ax ,ay ,az ax , ay , az

 

 

,

 

 

 

число;

 

 

 

(2.9)

3)

 

a

 

 

a2x a2y az2

длина вектора;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(2.10)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4)

 

a b

 

 

 

ax bx , ay

by , az bz ;

 

 

 

 

 

 

 

 

 

 

 

(2.11)

22

5) a b

 

 

a b

 

 

 

 

 

 

ax

bx , ay

by , az bz

или

 

 

 

 

 

 

 

 

 

 

 

a

x

 

 

 

a y

 

a

z

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(2.12)

 

 

 

 

 

 

 

 

 

 

 

 

b

 

 

b

 

b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

y

 

 

z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Соотношение (2.12) называют условием коллинеарности векторов.

 

Направление вектора в пространстве. Направление вектора

a в про-

 

z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

странстве определяется углами , и

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

, которые вектор образует с осями

 

 

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

координат (рис. 2.11). Косинусы этих

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

углов ( cos ,

cos и cos ) называ-

 

az

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ют

 

направляющими косинусами. Со-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

"

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

У

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

гласно формуле (2.1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Г

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

 

 

 

np

"aН

 

a

 

cos ,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

З

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

 

 

 

 

У

 

a

a

 

cos ,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

np

 

 

 

ax

 

 

 

 

ay

 

 

 

 

 

 

 

 

 

 

y

 

 

 

 

 

 

 

 

 

 

 

y

 

В

 

y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Г

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

и

 

 

 

 

 

 

 

a

 

cos ,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

кaz npza

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

и

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

т

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

е

а

 

 

ua

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

м

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

откуда получаем

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

т

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Рис. 2.11

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

org

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

а

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a x

 

 

 

м

 

 

 

 

a y

 

 

 

 

 

 

 

az

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

matem

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ы

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cos

 

 

 

 

 

 

й

cos

 

 

 

 

 

 

,

cos

 

 

.

(2.13)

 

 

 

 

 

 

 

 

 

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ш

е

 

 

 

 

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

с

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Возводя каждое из равенств

(2.13) в квадрат и складывая их, с учетом форму-

лы (2.10) имеем

 

 

 

 

 

а

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

р

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

д

 

 

cos2

cos2 cos2 1.

 

 

 

 

 

 

 

(2.14)

 

 

 

 

е

 

 

 

 

 

 

 

 

 

 

 

 

 

ф

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

а

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

К

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Из (2.14) следует, что из трех углов , и произвольно можно задать

только два.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Для единичного вектора a0 ,

который по направлению совпадает с век-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

= 1), из (2.13) вытекает, что

тором a , но имеет длину, равную единице ( a

 

 

 

 

cos ax0 ,

 

 

 

 

cos a0y ,

 

 

 

 

cos az0 .

 

 

 

 

 

 

 

 

Таким образом, координатами единичного вектора служат его направ-

ляющие косинусы:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i cos j cos k cos . (2.15)

a0

cos , cos , cos

 

 

 

или

 

a0

Деление отрезка в заданном отношении.

 

Пусть точка

M x, y,z

делит отрезок

между точками

 

 

 

A x1, y1,z1

 

 

 

 

и

 

B x2 , y2 ,z2 в отношении

23

 

 

 

 

 

 

 

 

 

 

 

 

 

 

В

 

 

AM

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(рис.

2.12). Тогда АМ МВ.

 

М

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MB

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Очевидно,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

x1, y y1,z z1 ,

 

А

Рис. 2.12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

АМ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x2

x, y2 y,z2 z .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

МB

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Из равенства векторов А

М и

МB следует равенство их одноименных коор-

динат (2.11), т.е.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x x1 x2 x ,

 

y y1 y2 y ,

 

z z1 z2 z ,

 

откуда следуют формулы, определяющие координаты точки М:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

"

 

 

 

 

 

 

 

 

x

 

x

 

 

 

 

 

 

 

 

y y

 

 

 

 

 

 

z

 

У

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

2

 

 

 

 

Г z

2

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

,

y

 

 

 

 

 

 

 

 

 

 

 

 

,

z

 

 

 

 

 

.

(2.16)

 

 

 

 

1

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

З

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

У

 

 

 

 

 

 

 

 

 

 

При делении отрезка пополам

 

 

 

 

 

 

 

 

 

 

 

 

 

 

В

 

для середины отрезка

 

 

1. ПоэтомуГ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

и

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

x

 

 

 

 

 

 

 

 

y

 

 

 

 

к

 

 

 

z

 

z

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

yи

 

 

 

 

 

2

 

 

 

 

 

x

 

 

1

 

 

 

,

y

 

 

 

1

т2

 

,

 

z

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

е

а

 

 

 

 

 

 

 

 

 

 

.

 

 

(2.17)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

ua

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

т

м2

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a.org3; 2; 6 и b 2; 1; 0 . Найти

Пример 2.5. Даны два векторам

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

а

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

matem

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

й

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

координаты векторов: а)

a

bш; б)

 

 

 

b ; в)

 

2a ; г)

 

 

 

b

; д) 2a 3b .

 

 

 

 

 

 

 

 

 

 

 

 

с

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ы

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

в

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Решение. Сумму и разность векторов можно найти, используя формулу

(2.8):

 

 

 

 

 

 

 

а

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

р

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

д

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

е

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b 3; 2; 6 2; 1; 0 3 2; 2 1; 6 0 1; 1; 6 .

а) a

 

 

ф

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

а

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

К

 

2; 6 2; 1; 0 3 2; 2 1; 6 0 5; 3; 6

б) a

b 3;

Согласно формуле (2.9) при умножении вектора на число все его координаты умножаются на это число. Поэтому имеем:

в) 2a 2 3; 2; 6 2 3; 2 2 ; 2 6 6; 4; 12 г) 12 b 12 2; 1; 0 1; 12; 0 .

По тем же формулам (2.8) и (2.9) можно найти линейную комбинацию векторов:

д) 2a 3b 2 3; 2;6 3 2;1;0 6; 4;12 6;3;0 0; 1;12 .

24

Пример 2.6. Определить,

при

каких

значениях

и векторы

a 2i 3 j k

и b i

6 j 2 k

коллинеарны.

 

Решение. В условие коллинеарности векторов (2.12) подставим коорди-

наты векторов a 2; 3; β

и b ; 6;2 :

 

 

 

2

 

3

 

 

3 12,

 

4,

 

 

 

6

2

 

6 6

 

1.

 

Пример 2.7. Определить модули суммы и разности векторов a 3; 5;8 и b 1;1; 4 .

Решение. Находим по формуле (2.8) сумму и разность векторов (см.

пример 2.5), после чего согласно формуле (2.10) вычисляем модули получен-

ных векторов.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

"

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

У

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Г

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Н

 

 

 

 

a b 3; 5; 8 1; 1; 4 2; 4; 4 ,

 

 

"

 

 

 

 

 

 

 

З

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

У

 

 

 

 

 

 

 

 

3; 5; 8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

В

 

 

 

 

 

 

 

a b

1; 1; 4 4; 6; 12Г;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

и

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

к

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

2

 

 

 

2

 

 

 

 

 

 

 

 

и

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

т

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a b

 

2

4

 

 

4

 

 

 

 

а

 

 

 

16

 

36 6 ;

 

 

 

 

 

 

 

 

4

16

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

е

 

 

 

 

ua

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

т

м

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

2

 

 

 

 

2м

.org

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

6

 

 

12

 

 

а

 

16

36 144

 

196 14 .

 

 

a b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

й

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

е

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ш

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Пример

 

 

 

 

 

с

 

 

 

 

 

 

 

 

 

 

которая

 

является концом

вектора

2.8. Найти

 

точкуmatemB ,

 

 

 

 

 

 

 

 

 

 

 

 

ы

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a 3; 4;

 

 

 

 

 

 

 

 

в

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 , если егоан чало совпадает с точкой A 2; 1; 1 .

 

 

 

 

 

 

 

 

 

 

 

р

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

д

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

е

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

. Координаты вектора a АB оп-

 

 

 

 

 

 

ф

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Решение. Обозначим B xB ; yB ; zB

ределяются

 

 

 

а

 

 

 

(2.7),

 

 

а

 

именно

ax xB xA;

ay yB yA ;

 

 

формуламиК

 

 

 

az zB zA , откуда

xB ax xA 3 2 5 ;

yB ay yA 4 1 5;

zB az zA 2 1 3. Таким образом,

конец вектора a совпадает с точкой

B 5; 5; 3 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A 1;5; 10 ,

 

B 5; 7;8 ,

C 2;2; 7 и

Пример 2.9.

Даны

 

точки

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D 5; 4;2 . Проверить, что векторы AB

и CD коллинеарны; установить, ка-

кой из них длиннее другого и во сколько раз, как они направлены – в одну или в противоположные стороны.

 

 

 

; Z2 и

Решение. Введем обозначения AB X1;Y1; Z1 ,

CD X 2

;Y2

вычислим координаты указанных векторов по формулам (2.7):

25

 

X1 xB xA 5 1 6,

 

 

 

X2 xD xC 5 2 3,

 

Y1 yB yA 7 5 12,

 

 

 

Y2 yD yC 4 2 6,

 

Z1 zB zA 8 10 18,

 

 

 

Z2 zD zC 2 7 9.

 

 

 

 

 

6; 12; 18 ,

 

3; 6; 9 . Эти векторы коллинеарны,

 

Имеем AB

CD

так как их координаты пропорциональны (см. условие 2.12)):

 

 

 

 

 

 

 

 

 

 

 

6

 

 

 

12

18

2 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

6

 

9

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6; 12; 18 2 3; 6; 9 , т.е.

Очевидно, можно записать AB

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AB 2CD .

 

 

 

 

 

 

 

"

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

У

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Г

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Это означает, что вектор AB в два раза длиннее вектора CD , а направления

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Н

 

 

 

этих векторов совпадают.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

"

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

З

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

У

 

 

 

 

 

 

Пример 2.10. Даны три последовательныеВ

вершины параллелограмма

A 1;1;4 , B 2;3; 1 ,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Г

 

 

 

 

 

 

 

C 2;2;0 . Найти координаты четвертой вершины D .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

и

 

 

 

 

 

 

 

 

 

Решение. Сделаем схематический чертеж (рис. 2.13). У параллелограм-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

а

 

ua

 

 

 

 

стороны равны и па-

 

В

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ма противоположныем

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

е

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

т

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

С

 

 

 

 

org

 

поэтому можно записать равен-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

раллельны,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ством

 

.

 

 

 

 

 

 

 

 

 

 

 

A

 

 

 

 

D

 

 

 

 

 

 

 

 

 

 

matem

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

й

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

е

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ш

 

 

 

 

 

 

 

 

AB DC .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

с

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ы

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

в

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D x, y,z и

 

 

 

 

 

 

 

 

 

а

 

 

 

 

 

 

 

 

Обозначим

 

определим коор-

 

Рис. 2.13

 

 

 

р

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

д

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

е

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AB и

 

DC по формулам

 

 

 

ф

 

 

 

 

 

 

 

 

 

 

 

 

динаты векторов

 

(2.7) (см. примера2.9). Получим

 

 

 

 

 

 

К

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1;2; 5 ,

 

 

 

 

2; y 2; z .

 

 

 

AB

CD x

Два вектора равны тогда и только тогда, когда их соответствующие координаты совпадают (2.11). Следовательно, должны выполняться равенства

 

x 2 1,

y 2 2,

z 5 ,

 

 

откуда x 1,

y 4,

z 5 . Таким образом,

четвертая вершина парал-

лелограмма находится в точке D 1; 4; 5 .

 

 

Пример

2.11.

Доказать, что

точки

A 3;4;1 ,

B 1;0; 1 и

M 2; 6; 4 лежат

на одной прямой.

 

 

 

Решение. Если точки А, В и М лежат на одной прямой, то векторы AB

26

и AM коллинеарны (рис. 2.12), т.е. согласно (2.12) их координаты пропорциональны.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X2;Y2; Z2

Найдем координаты векторов AB X1;Y1; Z1

и AM

(см. формулы (2.7) и пример 2.9):

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X1 xB xA 1 3 2,

 

 

X 2 xM xA 2 3 5,

 

Y1 yB yA 0 4 4,

 

 

Y2 yM yA 6 4 10,

 

Z1 zB zA 1 1 2,

 

Z2 zM zA 4 1 5.

 

 

 

 

2; 4;

2 ,

 

 

5; 10; 5 . Эти векторы колли-

Имеем

AB

 

AM

неарны, так как

 

 

2

 

 

 

4

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

"

М лежат на

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

. Следовательно, точки А, В и

 

 

 

 

5

 

 

 

 

10

 

 

5

 

 

 

 

 

 

 

 

 

 

 

У

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Г

 

 

 

одной прямой.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Н

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

"

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

З

 

 

 

 

 

 

Пример 2.12. Даны точки A 1;2;1 ,

 

 

У

 

 

 

 

 

 

B 2;В 1; 3 и C 3; ; . При ка-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Г

 

 

 

 

 

 

 

ких значениях и точка С лежит на прямойиАВ?

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

к

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

и

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

т

 

 

 

 

 

 

 

Решение. Если точка С

 

 

 

 

е

а

 

ua

АВ, то векторы

AB и

 

 

 

 

 

м

 

 

 

 

AC

лежит на прямой

коллинеарны (см. пример 2.11). Найдемт

 

.

 

 

 

 

 

 

 

 

координаты указанных векторов по

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

а

 

 

 

 

 

 

 

 

 

 

 

 

 

формулам (2.7) и потребуем выполнениям .orgусловия коллинеарности (2.12).

 

 

 

 

 

 

 

 

 

 

 

 

ы

 

 

 

matem

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

й

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Имеем

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

е

 

 

2; 2; 1 ;

 

 

 

 

 

AB 1; 3; 2 ш, AC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

в

с

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

2 6,

 

 

 

4,

 

 

 

 

 

 

 

 

а

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

р

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

д2

 

 

 

1

 

 

 

 

1 4

 

 

 

5.

 

 

 

 

 

 

 

е

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ф

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

а

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ПримерК2.13. Доказать, что четырехугольник с вершинами A 2;1; 4 , B 1;3;5 , C 7;2;3 и D 8;0; 6 есть параллелограмм. Найти длины его сто-

рон.

Решение. Для доказательства достаточно убедиться, что векторы, совпа-

 

 

 

 

дающие с противоположными сторонами параллелограмма, например,

AB

 

 

 

 

и DC , равны (рис. 2.13). Определим по формулам (2.7) координаты указанных

 

 

 

9 .

векторов (см. примеры 2.9 и 2.11). Получим AB 1; 2;9 , DC 1; 2;

 

 

 

 

Следовательно, AB DC , т.е. четырехугольник ABCD – параллелограмм.

Длины сторон этого параллелограмма можно найти как модули векторов

 

 

 

 

AB 1; 2; 9 и

AD 6; 1; 2 по формуле (2.10):

 

 

27

AB 1 2 22 92 1 4 81 86 ;

AD 62 1 2 2 2 36 1 4 41 .

Пример 2.14. Проведен отрезок от точки A 1; 1 до точки B 4;5 .

До какой точки необходимо его продолжить в том же направлении, чтобы его длина удвоилась?

 

у

 

 

 

 

 

 

 

 

 

Решение. Продолжить отрезок АВ в том же

С

 

 

 

 

 

 

направлении так, чтобы его длина удвоилась, оз-

 

 

 

 

 

 

 

 

начает, что от точки В по прямой АВ следует от-

 

 

 

 

 

 

 

 

ложить отрезок ВС такой же длины, как и отрезок

 

 

 

 

 

 

 

 

АВ (рис. 2.14). Тогда точка B" 4; 5 разделит от-

В

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

У

 

 

 

 

 

 

 

 

 

 

резок

 

 

 

 

 

 

 

 

 

 

 

 

 

Г

 

 

 

 

 

 

 

 

 

 

 

 

АС пополам. В этом случае координаты то-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Н

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

"

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

чек А, Ви Ссвязаны формулами (2.17), а именно:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

З

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

У

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

х

 

 

 

 

 

 

 

 

 

x

 

 

В

 

 

 

 

 

 

 

y

 

y

 

 

 

А

 

 

 

 

 

 

 

xB

 

 

Гx

, yB

 

 

 

 

 

 

 

 

 

 

 

 

 

A

и C

 

 

A

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

к

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

и

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

т

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Рис. 2.14

 

 

 

 

 

 

 

 

 

 

 

 

а

.ua

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

м

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(координата

z

отсутствует, так как точки лежат на

 

 

 

 

 

 

 

 

 

 

 

 

 

 

е

org

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

плоскоститхОу).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

а

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Из записанных соотношений вытекаютм

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

формулы:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ы

 

 

 

matem

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

й

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x 2x

 

x

 

2

 

е

1 9 ,

 

y 2 y

 

 

y

 

 

2 5 1 11.

 

 

4

 

 

 

 

 

 

C

 

B

 

 

A

 

 

 

с

 

 

 

 

 

 

 

 

C

 

 

B

 

 

 

 

A

 

 

 

 

 

 

 

 

 

 

ш

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Следовательно, отрезок АВв

необходимо продолжить до точки C 9; 11 .

 

 

 

 

 

 

 

а

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

р

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

д

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Пример 2.15е. Отрезок AD точками В и С разделен на три равные час-

 

 

 

 

ф

 

 

 

 

Ви С, если A 1; 3; 0 и D 5; 6; 9 .

ти. Найти координаты точек

 

 

 

К

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Решение. Сделаем схематический чертеж (рис. 2.15). Точка Вделит от-

 

 

 

 

 

 

 

 

 

резок AD в отношении

 

AB

1

A

B

 

C

 

 

D

 

 

BD

2 . Воспользу-

Рис. 2.15

 

 

 

емся формулами (2.16):

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

xA xD

 

1

5

 

 

yA yD

 

3

6

 

xB

 

 

 

2

 

1 ,

yB

 

 

 

2

 

 

 

0 ,

1

1

1

 

 

1

1

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

1

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

zB

zA zD

 

0 2 9

3.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

1

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

28

Таким образом, определились координаты точки B 1;0;3 .

Точку C можно рассматривать как точку, которая делит отрезок AD в

отношении CDAC 12 2 , либо как середину отрезка BD . Воспользуемся второй возможностью и формулами (2.17):

 

 

 

x

 

 

xB xD

1 5 3,

 

 

y

 

 

yB yD

0 6 3,

 

 

 

 

 

 

 

 

 

 

 

C

2

 

 

 

 

 

 

2

 

 

 

 

 

 

C

 

 

 

 

 

2

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z

 

 

zB zD

 

3 9 6 .

Следовательно,

 

C 3; 3; 6 .

 

 

 

 

 

 

C

 

2

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Пример 2.16. Даны вершины треугольника A 1;4 ,"B 5;3 и C 3; 2 .

Определить длину медианы BM (рис. 2.16).

 

 

 

 

 

 

 

 

 

У

 

 

 

 

 

 

 

 

 

 

Г

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Н

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

"

 

 

 

М, которая по

 

 

Решение. По формулам (2.17) найдем координаты точки

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

З

 

 

 

 

 

 

 

у

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

условию делит сторонуУ

 

AC пополам:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

В

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

xA xC

Г

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

А

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

и

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

В

 

 

 

 

 

 

 

 

 

M

 

 

 

2

 

 

к

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

и

 

 

 

 

 

 

 

 

 

 

M 2; 1 ,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

т

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

а

 

 

 

 

 

4 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

yA yC

 

 

 

 

 

 

 

 

 

 

М

 

 

 

 

 

 

 

 

 

 

 

 

 

yM

 

е

 

 

 

.ua

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

т

м

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

м

 

org

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

х

 

 

 

 

 

 

 

а

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Рис. 2.16

 

 

 

 

 

 

 

 

 

 

 

 

matem

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

С

 

 

 

 

 

 

 

 

 

 

 

й

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Определим координаты вектора BM по форму-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ш

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

слам (2.7):

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ы

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

в

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

а

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BM рxM xB ; yM yB 2 5;1 3 3; 2 .

 

 

 

 

 

 

 

 

 

д

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

е

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Длина медианы BMф

 

 

может быть вычислена по формуле (2.10) как длина век-

 

 

 

 

 

 

 

а

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

:

 

 

К

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

тора BM

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 2 2 2 13 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BM

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2;6; 4 и

 

 

 

 

 

 

 

 

 

 

 

 

Пример 2.17. Векторы AB

 

AC 4;2; 2 совпадают со

сторонами треугольника АВС. Определить координаты вектора, приложенного к вершине треугольника Аи совпадающего с его медианой АМ.

Решение. Построим на векторах AB и AC как на сторонах параллелограмм ABDC (рис. 2.17). Известно, что диагонали параллелограмма в точке пересечения делятся пополам. Из этого следует, что точка M есть середина

29

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]