
- •Учебно-методические разработки для самостоятельной работы студентов по курсу «Теоретические основы защиты окружающей среды»
- •Часть I
- •Обезвоживание и методы очистки сточных вод
- •Введение
- •Глава 1. Основные законы термодинамики. Понятие энтропии как функции обесценивания энергии и стремления системы к хаосу
- •1.1 Понятие «энтропия». Принцип существования и возрастания энтропии
- •1.2. Энергоэнтропийная концепция аварийности и травматизма
- •1.3. Воздействие промышленного производства на природу. Ресурсосберегающая технология. Материальный баланс производства
- •1.4. Классификация основных процессов
- •1.5. Общие принципы анализа и расчета процессов и аппаратов
- •1.5.1. Материальный баланс
- •1.5.2. Энергетический баланс
- •1.5.3. Интенсивность процессов и аппаратов
- •1.5.4. Определение основных размеров аппаратов
- •1.5.5. Моделирование и оптимизация процессов и аппаратов
- •Контрольные вопросы
- •Глава 2. Классификация двухфазных систем
- •2.1. Методы обезвоживания
- •2.2. Формы связи воды с твердым телом. Энергия связи различных форм воды с твердым телом
- •2.3. Влагоудерживающая способность твердых тел. Влияние основных факторов на степень обезвоживания
- •Контрольные вопросы
- •Глава 3. Отделение жидкости под действием механических методов
- •3.1. Обезвоживание кускового материала дренированием
- •3.1.1. Гидродинамика течения жидкости под влиянием собственного веса в порах осадка
- •3.2. Отстаивание под действием силы тяжести
- •3.2.1. Основные понятия. Классификация суспензий
- •3.2.2. Способы выражения и расчета концентрации твердого в пульпе
- •3.2.3. Исследование скорости расслоения суспензий I-го и II-го классов методом длинной трубки
- •3.2.4. Качественное описание процесса расслоения суспензий III и IV классов
- •3.2.5. Расчет удельной поверхности сгущения по методу Коу и Клевенжера
- •3.2.6. Расчет удельной поверхности по методу Кинча
- •3.2.7. Определение высоты сгустителя
- •3.2.8. Пример расчета сгустителя по методу Кинча
- •Контрольные вопросы
- •Глава 4. Применение центробежной силы при обезвоживании
- •4.1. Основные понятия
- •4.2. Особенности применения гидроциклонов для обезвоживания
- •Порядок расчета гидроциклона.
- •4.3. Особенности применения центрифуг для сгущения суспензий
- •4.4. Основные закономерности разделения суспензий в осадительных центрифугах. Индекс производительности
- •4.5. Физические основы разделения суспензий в фильтрующих центрифугах
- •Контрольные вопросы
- •Глава 5. Фильтрование
- •5.1. Основные понятия. Классификация
- •5.2. Физические основы фильтрации с образованием осадка. Гидродинамика течения жидкости через пористые и зернистые слои
- •5.3. Основное уравнение фильтрации
- •5.4. Определение оптимальных условий работы фильтров. Экономически выгодный цикл фильтрации
- •5.5. Применение уравнения фильтрации. Определение удельного сопротивления осадка и его сжимаемости
- •5.6. Фильтровальные перегородки
- •5.7. Конструкции фильтров. Периодически и непрерывно действующие. Классификация. Фильтры, работающие под давлением. Вакуум-фильтры. Способы снятия осадка
- •5.8. Выбор и расчет фильтров
- •5.9. Схемы подсоединения вакуум-фильтров
- •Контрольные вопросы
- •Глава 6. Агрегирование
- •6.1. Теория процесса агрегирования. Механизмы встреч частиц друг с другом. Понятие о расклинивающем давлении Теория процесса агрегации
- •Два механизма соударения или встречи частиц
- •6.2. Три слагающие поверхностных сил (расклинивающего давления). Двучленный закон взаимодействия
- •6.3. Силы Ван-дер-Ваальса. Слагающие сил Ван-дер-Ваальса. Ван-дер-ваальсово взаимодействие между молекулами и конденсированными фазами Силы Ван-дер-Ваальса
- •Электромагнитная теория взаимодействия конденсированных фаз
- •6.4. Природа ионно-электростатических сил. Закономерность изменения их вглубь раствора
- •6.5. Гидратационная слагаемая поверхностных сил (расклинивающего давления)
- •6.6. Три механизма агрегирования: коагуляция, флокуляция, мостиковая флокуляция
- •6.7. Основные принципы селективной агрегации частиц
- •6.8. Характеристика применяемых высокомолекулярных синтетических флокулянтов
- •Контрольные вопросы
- •Глава 7. Абсорбция
- •7.1. Общие сведения
- •7.2. Равновесие при абсорбции
- •7.3. Материальный и тепловой балансы процесса
- •7.4. Скорость процесса
- •Контрольные вопросы
- •Глава 8. Адсорбция
- •8.1. Общие сведения
- •8.2. Характеристики адсорбентов и их виды
- •8.3. Равновесие при адсорбции
- •8.4. Кинетика адсорбции
- •8.5. Десорбция
- •Контрольные вопросы
- •Глава 9. Флотация
- •9.1. Общие сведения
- •9.2. Теоретические основы процесса флотации
- •9.3.Флотационные реагенты и их классификация
- •9.4. Механизм действия собирателей
- •9.5. Реагенты-депрессоры
- •9.6.Реагенты-активаторы
- •9.7. Реагенты-регуляторы среды
- •9.8. Реагенты-пенообразователи
- •Контрольные вопросы
- •Глава 10. Экстракция
- •10.1 Процессы экстракции в системах жидкость-жидкость
- •10.1.1. Общие сведения
- •10.1.2. Равновесие в системах жидкость - жидкость
- •10.1.3. Методы экстракции
- •10.2. Процессы растворения и экстракции в системах твердое тело - жидкость
- •10.2.1. Общие сведения
- •10.2.2. Равновесие и скорость выщелачивания
- •Контрольные вопросы
- •Глава 11. Сушка
- •11.1. Основные понятия. Параметры, подлежащие расчету
- •11.2. Равновесное содержание влаги при сушке. Кинетика сушки. Понятие о напряжении объема сушилки
- •11.3. Основные параметры влажного воздуха
- •11.5. Изображение процессов изменения состояния воздуха на j - X на диаграмме
- •11.6. Материальный и тепловой балансы сушки
- •11.7. Расчет удельных расходов воздуха и тепла на сушку
- •11.8. Расчет сушилки в случае частичной рециркуляции обработанного воздуха
- •11.9. Сушка топочными газами
- •11.10. Конструкции сушилок
- •Контрольные вопросы
- •Литература
- •Оглавление
- •Глава 1. Основные законы термодинамики. Понятие энтропии как функции обесценивания энергии и стремления системы к хаосу 6
- •Глава 2. Классификация двухфазных систем 41
- •Глава 3. Отделение жидкости под действием механических методов 50
- •Глава 4. Применение центробежной силы при обезвоживании 75
- •Глава 5. Фильтрование 86
- •Глава 6. Агрегирование 117
- •Глава 7. Абсорбция 144
2.3. Влагоудерживающая способность твердых тел. Влияние основных факторов на степень обезвоживания
Влагоудерживающая способность материалов в первую очередь определяется гранулометрическим составом частиц и величиной смачиваемости их поверхности жидкостью, а также наличием пор в самих твердых частицах.
При уменьшении размера частиц отделение их от жидкости затрудняется по следующим причинам: падает скорость осаждения, уменьшается сила веса, вязкость суспензии быстрее увеличивается при наличии в ней мелких частиц, капилляры в осадке образуются более тонкие, что затрудняет вытекание из них жидкости. Возрастает роль капиллярных сил и доля влаги, удерживаемой ими. Возрастает величина поверхности частиц и, следовательно, доля адсорбционно удерживаемой жидкости. Мелкие частицы могут также закупоривать капилляры, имеющиеся между крупными частицами в осадке.
С ростом смачиваемости поверхности жидкостью (например, водой) доля адсорбционно-связанной воды увеличивается. Обычно эту влагу нецелесообразно удалять даже при сушке, так как адсорбционная влага находится в равновесии с парами воды атмосферного воздуха.
Степень гидратации поверхности определяется величиной смачиваемости и оказывает сильное влияние на агрегирование частиц. Гидратные слои препятствуют агрегированию частиц, а в отсутствии агрегирования скорость осаждения твердой фазы всегда меньше. В случае образования агрегатов из частиц осаждение значительно ускоряется.
Влагоудерживающая способность также определяется пористостью самих твердых частиц. Материалы по степени пористости условно разделяют на три класса: макропористые (размер пор более 2,10-4мм), переходные (размер пор 6,10-6 2,10-4мм) и микропористые (размер пор 2,10-6 6,10-6мм). Степень пористости материалов определяет величину внутренней поверхности, а также сказывается на характере адсорбции воды.
Удельная внутренняя поверхность макропор относительно мала, поэтому на их стенках адсорбируется незначительное количество воды. На поверхности переходных пор удерживается большое количество адсорбированной влаги. Размеры микропор, как уже отмечалось, приближаются к размерам адсорбируемых молекул воды и адсорбция в микропорах приводит к заполнению их объема. Такие тела обычно называют гигроскопичными, и они удерживают значительное количество влаги.
В больших порах диаметром более 2,10-4 мм и малых порах, сравнимых с диаметром молекул воды, явление капиллярной конденсации отсутствует. Уравнение Кельвина применимо, следовательно, не только к капиллярным системам, образуемым в каналах межзеренного пространства в осадке, а также и к самим твердым частицам, если последние имеют поры переходного размера.
К микропористым материалам относятся цеолиты, которые представляют собой алюмосиликаты катионов элементов первой и второй групп периодической системы Д.И. Менделеева. Цеолиты применяются даже как адсорбенты. Сульфидные материалы можно отнести к макропористым материалам. Сведения о степени пористости большинства материалов в настоящее время отсутствуют.