Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Finalka_versia_2 графика.pdf
Скачиваний:
129
Добавлен:
05.06.2015
Размер:
1.98 Mб
Скачать

№4 Первичные и вторичные цвета. Цветовая схема RGB. Цветовая система CMY и CMYK.

Первичные цвета: разделяются первичные природные цвета света и первичные цвета пигментов. Это цвета, которые не создаются путем смешивания. Если смешать первичные красный, синий и зеленый лучи, то получится белый свет. Если смешать первичные мадженту(пурпурный), циан(голубой) и желтый - цвета пигментов - то получим черный цвет.

Вторичные цвета: получаются путем смешивания двух первичных цветов.

Третичные цвета: образуются путем смешивания первичного и вторичного цветов.

Дополнительные цвета:

располагаются на противоположных сторонах хроматического круга. Так, например, для красного является дополнительным зеленый

RGB (аббревиатура английских слов

Red, Green, Blue — красный, зелёный,

синий) — аддитивная цветовая модель, как правило, описывающая способ синтеза цвета для цветовоспроизведения.

Выбор основных цветов обусловлен особенностями физиологии восприятия цвета сетчаткой человеческого глаза. Цветовая модель RGB нашла широкое применение в технике.

Модель CMY: основана на голубом (Cyan), пурпурном (Magenta) и желтом (Yellow) цветах. Модель описывает отраженные цвета (краски), которые образуются в результате вычитания части спектра падающего света на поверхность. При смешении двух цветов результат темнее обоих исходных. От английского Subtract (вычитать) модель CMY называют субтрактивной.

Модель CMYK: Модель CMYK описывает реальный процесс цветной печати на офсетной машине и цветном принтере. Четвертый компонент K – черный (blacK) цвет. Основные субтрактивные цвета достаточно яркие и поэтому не годятся для воспроизведения темных цветов. Используя только голубой, пурпурный и желтый цвета нельзя вывести на печать черный цвет – получается грязно-коричневый цвет. Черный цвет в модели CMYK также используется для подчеркивания теней, создания темных оттенков. Использование черной краски позволяет существенно уменьшить расход других красок. Интенсивность цветов изменяется от 0% до 100%.

5)Система HSL

Другой популярной цветовой системой является HSL (от "hue, saturation, lightness" - "тон, насыщенность, яркость"). У этой системы есть несколько вариантов, где вместо насыщенности используется хроматичность (chroma), светимость (luminance) вместе с яркостью (value)

(HSV/HLV). Именно эта система соответствует тому, как человеческий глаз видит цвет.

YUV — цветовая модель, в которой цвет представляется как 3 компоненты — яркость (Y) и две цветоразностных (U и V).

Модель широко применяется в телевещании и хранении/обработке видеоданных. Яркостная компонента содержит «черно-белое» (в оттенках серого) изображение, а оставшиеся две компоненты содержат информацию для восстановления требуемого цвета. Это было удобно в момент появления цветного ТВ для совместимости со старыми черно-белыми телевизорами.

В цветовом пространстве YUV есть один компонент, который представляет яркость (сигнал яркости), и два других компонента, которые представляют цвет (сигнал цветности). В то время как яркость передается со всеми деталями, некоторые детали в компонентах цветоразностного сигнала, лишённого информации о яркости, могут быть удалены путем понижения разрешения отсчетов (фильтрация или усреднение), что может быть сделано несколькими способами (т.о. есть много форматов для сохранения изображения в цветовом пространстве YUV).

6. Общая характеристика базовых алгоритмов ОИ. Задачи дискретизации и квантования.

Обработка изображений (Computer Vision) — это преобразования изображений. Входными данными является изображение, и результат обработки — тоже изображение. Примерами обработки изображений могут служить: повышение контраста, чёткости, коррекция цветов, редукция цветов, сглаживание, уменьшение шумов и так далее. В качестве материала для обработки могут использоваться космические снимки, сканированные изображения, радиолокационные, инфракрасные изображения и т. п. Задачей обработки изображений может быть как улучшение в зависимости от определенного критерия (реставрация, восстановление), так и специальное преобразование, кардинально меняющее изображения. В последнем случае обработка изображений может быть промежуточным этапом для дальнейшего распознавания изображения. Например, перед распознаванием часто необходимо выделять контуры, создавать бинарное изображение, разделять по цветам.

Методы обработки изображений могут существенно отличаться в зависимости от того, каким путем получено изображение — синтезировано системой КГ либо это результат оцифровки черно-белой или цветной фотографии.

Дискретизация.

Раскрывающийся список Sub Sampling (Дискретизация) задает количество пикселей однородного участка. При установленном по умолчанию значении 1 : 1 тонируются все пиксели. Значение 8 : 1 задает тонирование каждого восьмого пикселя. Увеличение дискретности часто используется при экспериментировании с различными источниками света и материалами для предварительного просмотра результатов тонирования, поскольку, чем выше дискретность, тем меньше время тонирования. Получив удовлетворительный результат, можно опять установить значение 1 : 1, обеспечивающее наилучшее качество изображения.

Квантование.

В этом разделе задается точность, с которой вычисляется каждый пиксель. Норма квантования (sample rate) определяет, сколько квантов (т.е. участков одного цвета) вычисляется на каждый пиксель. Например, если норма квантования равна ¼, то один квант вычисляется на каждые четыре пикселя. Если норма квантования больше единицы, для каждого пикселя вычисляется больше одного кванта. Чем меньше минимальная норма квантования, тем быстрее выполняется тонирование, однако тем менее аккуратным будет результат. Максимальная норма квантования применяется, когда соседние пиксели недостаточно контрастные. Параметр Contrast color (Контрастность цветов) используется для определения текущих норм квантования с учетом минимальной и максимальной нормы.

7)Гамма-характеристика. Задача коррекции гамма-характеристики

Блок-схема аппаратуры ввода

 

 

 

 

Линейный

 

 

 

 

Наблюдаемая

Блок

 

 

Насыщение

 

Воспринятая

 

пространственный

 

 

яркость

 

логарифмирования

 

фильтр

 

 

 

яркость

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Логарифмическое преобразование, введённое в блок-схеме, является большим упрощением. Но, не смотря на недостатки, эта модель является полезной и реализуемой в виде гаммахарактеристики.

Термин «Гамма» в системах КГ и ОИ относится к нелинейной характеристике электроннолучевой трубки (ЭЛТ) монитора. ЭЛТ не производит световую интенсивность, равную входному напряжению, а имеет место нелинейная зависимость, называемая γ-характеристика. Гамма регулирует электростатические заряды в электронных пушках, а не светимость люминофора. Значение гаммы для большинства ЭЛТ приблизительно 2.0-2.5

Гамма характеристика – характеристика передачи уровней (яркости) – зависимость уровней яркости телевизионного изображения от уровней яркости объекта.

Информация о яркости в аналоговом виде в телевидении и в цифровом виде в большинстве распространенных графических форматов, хранится в нелинейной шкале. Яркость пиксела на экране монитора в первом приближении можно считать пропорциональной:

I ~ Vγ

I – яркость пиксела на экране дисплея (или яркость составляющих а: красный, зеленый, синий в отдельности),

V – численное значение цвета, γ – показатель гамма-коррекции.

График γ-характеристики

Нижняя линия — гамма монитора, верхняя — гамма файла, прямая линия — гамма изображения

Коррекция гаммы

Исторически это обусловлено тем, что у электронно-лучевой трубки зависимость между количеством испускаемых фотонов и напряжением на катоде близка к экспоненциальной зависимости. Для ЖК мониторов, проекторов и т.д., где зависимость между напряжением и яркостью имеет более сложный характер, используются специальные компенсационные схемы.

Калибровка устройств.

Гамма-коррекция – формула для исправления гаммы: y= 1, Где - гамма монитора.

Гамма коррекция необходима для более точной передачи интенсивностей монитором. Не все компьютерные мониторы имеют гамму точно 2.5; некоторые могут быть 2.2, в то время как другие могут быть ближе к 2.7. Кроме того, красные, зеленые и синие электронные пушки могут иметь индивидуальные значения напряжения/яркость.

Рисунок показывает исправленные значения гаммы системой

калибровки монитора. Гамма Красного, зеленого, и синего различны.

При переносе графического файла между компьютерами копия изображения может выглядеть светлее или темнее, чем оригинал. В разных операционных системах (например Microsoft Windows, GNU/Linux и Macintosh) существуют разные стандарты встроенной гамма коррекции.

Например, встроенная в формат PNG гамма-коррекция работает следующим образом: данные о настройках дисплея, видеоплаты и программного обеспечения (информация о гамме) сохраняется в файле вместе с самим изображением, что и обеспечивает идентичность копии оригиналу при переносе на другой компьютер.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]